Even and odd functions

The sine function and all of its Taylor polynomials are odd functions.
The cosine function and all of its Taylor polynomials are even functions.

In mathematics, an even function is a real function such that for every in its domain. Similarly, an odd function is a function such that for every in its domain.

They are named for the parity of the powers of the power functions which satisfy each condition: the function is even if n is an even integer, and it is odd if n is an odd integer.

Even functions are those real functions whose graph is self-symmetric with respect to the y-axis, and odd functions are those whose graph is self-symmetric with respect to the origin.

If the domain of a real function is self-symmetric with respect to the origin, then the function can be uniquely decomposed as the sum of an even function and an odd function.

Definition and examples

Evenness and oddness are generally considered for real functions, that is real-valued functions of a real variable. However, the concepts may be more generally defined for functions whose domain and codomain both have a notion of additive inverse. This includes abelian groups, all rings, all fields, and all vector spaces. Thus, for example, a real function could be odd or even (or neither), as could a complex-valued function of a vector variable, and so on.

The given examples are real functions, to illustrate the symmetry of their graphs.

Even functions

is an example of an even function.

A real function f is even if, for every x in its domain, x is also in its domain and[1]: p. 11  or equivalently

Geometrically, the graph of an even function is symmetric with respect to the y-axis, meaning that its graph remains unchanged after reflection about the y-axis.

Examples of even functions are:

  • The absolute value
  • cosine
  • hyperbolic cosine
  • Gaussian function

Odd functions

is an example of an odd function.

A real function f is odd if, for every x in its domain, x is also in its domain and[1]: p. 72  or equivalently

Geometrically, the graph of an odd function has rotational symmetry with respect to the origin, meaning that its graph remains unchanged after rotation of 180 degrees about the origin.

If is in the domain of an odd function , then .

Examples of odd functions are:

  • The sign function
  • The identity function
  • sine
  • hyperbolic sine
  • The error function
is neither even nor odd.

Basic properties

Uniqueness

  • If a function is both even and odd, it is equal to 0 everywhere it is defined.
  • If a function is odd, the absolute value of that function is an even function.

Addition and subtraction

  • The sum of two even functions is even.
  • The sum of two odd functions is odd.
  • The difference between two odd functions is odd.
  • The difference between two even functions is even.
  • The sum of an even and odd function is not even or odd, unless one of the functions is equal to zero over the given domain.

Multiplication and division

  • The product of two even functions is an even function.
    • That implies that product of any number of even functions is an even function as well.
  • The product of two odd functions is an even function.
  • The product of an even function and an odd function is an odd function.
  • The quotient of two even functions is an even function.
  • The quotient of two odd functions is an even function.
  • The quotient of an even function and an odd function is an odd function.

Composition

  • The composition of two even functions is even.
  • The composition of two odd functions is odd.
  • The composition of an even function and an odd function is even.
  • The composition of any function with an even function is even (but not vice versa).

Even–odd decomposition

If a real function has a domain that is self-symmetric with respect to the origin, it may be uniquely decomposed as the sum of an even and an odd function, which are called respectively the even part (or the even component) and the odd part (or the odd component) of the function, and are defined by and

It is straightforward to verify that is even, is odd, and

This decomposition is unique since, if

where g is even and h is odd, then and since

For example, the hyperbolic cosine and the hyperbolic sine may be regarded as the even and odd parts of the exponential function, as the first one is an even function, the second one is odd, and

.

Fourier's sine and cosine transforms also perform even–odd decomposition by representing a function's odd part with sine waves (an odd function) and the function's even part with cosine waves (an even function).

Further algebraic properties

  • Any linear combination of even functions is even, and the even functions form a vector space over the reals. Similarly, any linear combination of odd functions is odd, and the odd functions also form a vector space over the reals. In fact, the vector space of all real functions is the direct sum of the subspaces of even and odd functions. This is a more abstract way of expressing the property in the preceding section.
    • The space of functions can be considered a graded algebra over the real numbers by this property, as well as some of those above.
  • The even functions form a commutative algebra over the reals. However, the odd functions do not form an algebra over the reals, as they are not closed under multiplication.

Analytic properties

A function's being odd or even does not imply differentiability, or even continuity. For example, the Dirichlet function is even, but is nowhere continuous.

In the following, properties involving derivatives, Fourier series, Taylor series are considered, and these concepts are thus supposed to be defined for the considered functions.

Basic analytic properties

  • The derivative of an even function is odd.
  • The derivative of an odd function is even.
  • The integral of an odd function from −A to +A is zero (where A is finite, and the function has no vertical asymptotes between −A and A). For an odd function that is integrable over a symmetric interval, e.g. , the result of the integral over that interval is zero; that is[2]
    .
  • The integral of an even function from −A to +A is twice the integral from 0 to +A (where A is finite, and the function has no vertical asymptotes between −A and A. This also holds true when A is infinite, but only if the integral converges); that is
    .

Series

Harmonics

In signal processing, harmonic distortion occurs when a sine wave signal is sent through a memory-less nonlinear system, that is, a system whose output at time t only depends on the input at time t and does not depend on the input at any previous times. Such a system is described by a response function . The type of harmonics produced depend on the response function f:[3]

  • When the response function is even, the resulting signal will consist of only even harmonics of the input sine wave;
    • The fundamental is also an odd harmonic, so will not be present.
    • A simple example is a full-wave rectifier.
    • The component represents the DC offset, due to the one-sided nature of even-symmetric transfer functions.
  • When it is odd, the resulting signal will consist of only odd harmonics of the input sine wave;
  • When it is asymmetric, the resulting signal may contain either even or odd harmonics;
    • Simple examples are a half-wave rectifier, and clipping in an asymmetrical class-A amplifier.

This does not hold true for more complex waveforms. A sawtooth wave contains both even and odd harmonics, for instance. After even-symmetric full-wave rectification, it becomes a triangle wave, which, other than the DC offset, contains only odd harmonics.

Generalizations

Multivariate functions

Even symmetry:

A function is called even symmetric if:

Odd symmetry:

A function is called odd symmetric if:

Complex-valued functions

The definitions for even and odd symmetry for complex-valued functions of a real argument are similar to the real case. In signal processing, a similar symmetry is sometimes considered, which involves complex conjugation.[4][5]

Conjugate symmetry:

A complex-valued function of a real argument is called conjugate symmetric if

A complex valued function is conjugate symmetric if and only if its real part is an even function and its imaginary part is an odd function.

A typical example of a conjugate symmetric function is the cis function

Conjugate antisymmetry:

A complex-valued function of a real argument is called conjugate antisymmetric if:

A complex valued function is conjugate antisymmetric if and only if its real part is an odd function and its imaginary part is an even function.

Finite length sequences

The definitions of odd and even symmetry are extended to N-point sequences (i.e. functions of the form ) as follows:[5]: p. 411 

Even symmetry:

A N-point sequence is called conjugate symmetric if

Such a sequence is often called a palindromic sequence; see also Palindromic polynomial.

Odd symmetry:

A N-point sequence is called conjugate antisymmetric if

Such a sequence is sometimes called an anti-palindromic sequence; see also Antipalindromic polynomial.

See also

Notes

  1. ^ a b Gel'Fand, I. M.; Glagoleva, E. G.; Shnol, E. E. (1990). Functions and Graphs. Birkhäuser. ISBN 0-8176-3532-7.
  2. ^ W., Weisstein, Eric. "Odd Function". mathworld.wolfram.com.{{cite web}}: CS1 maint: multiple names: authors list (link)
  3. ^ Berners, Dave (October 2005). "Ask the Doctors: Tube vs. Solid-State Harmonics". UA WebZine. Universal Audio. Retrieved 2016-09-22. To summarize, if the function f(x) is odd, a cosine input will produce no even harmonics. If the function f(x) is even, a cosine input will produce no odd harmonics (but may contain a DC component). If the function is neither odd nor even, all harmonics may be present in the output.
  4. ^ Oppenheim, Alan V.; Schafer, Ronald W.; Buck, John R. (1999). Discrete-time signal processing (2nd ed.). Upper Saddle River, N.J.: Prentice Hall. p. 55. ISBN 0-13-754920-2.
  5. ^ a b Proakis, John G.; Manolakis, Dimitri G. (1996), Digital Signal Processing: Principles, Algorithms and Applications (3 ed.), Upper Saddle River, NJ: Prentice-Hall International, ISBN 9780133942897, sAcfAQAAIAAJ

References

Read other articles:

Hilton Fukuoka Sea Hawk dan Fukuoka Dome berada di Hawks Town. Hawks Town (ホークスタウンcode: ja is deprecated ) adalah kawasan perbelanjaan, olahraga, dan hiburan yang berintikan stadion bisbol Fukuoka Dome di Chūō-ku, Fukuoka, Jepang. Pengelola dan pemiliknya adalah Hawks Town Corporation, juga pengelola Hilton Fukuoka Sea Hawk dan Hawks Town Mall.[1] Lokasi Hawks Town berdekatan dengan Pantai Momochi, 15 menit berjalan kaki dari stasiun kereta bawah tanah Stasiun Tōjinma...

 

Military governor of Mari Ishtup-Ilum𒅖𒁾𒀭Military governor of MariStatue of Ishtup-Ilum.Reignc.2147–2136 BCEPredecessorNûr-MêrSuccessorIshgum-AdduDynastyShakkanakku dynasty Mariclass=notpageimage| Location of Mari, where Ishtup-Ilum ruled. Ishtup-Ilum, also Ishtup-El (𒅖𒁾𒀭, Ish-dub-ilum, c. 2147–2136 BCE)[1] was a ruler of the city of Mari, one of the military governors known as Shakkanakku in northern Mesopotamia, after the fall of the Akkadian Empire.[2]...

 

Castle in Ireland Bunratty CastleLocationBunratty village, County Clare, IrelandCoordinates52°41′48″N 8°48′42″W / 52.69667°N 8.81167°W / 52.69667; -8.81167Builtc. 1425Restored1956Restored by7th Viscount GortGoverning bodyClare County Council National monument of IrelandReference no.478[1] Location of Bunratty Castle in Ireland Bunratty Castle (Irish: Caisleán Bhun Raithe) is a large 15th-century tower house in County Clare, Ireland. It is loca...

Halaman ini berisi artikel tentang monarki Bahama. Untuk informasi tentang negara lainnya yang berbagi orang yang sama sebagai penguasa monarki, lihat Wilayah Persemakmuran. Ratu BahamaSedang berkuasaElizabeth II PerincianPewarisCharles, Pangeran WalesPenguasa pertamaElizabeth IIPembentukan10 Juli 1973 Monarki Bahama adalah sebuah sistem pemerintahan dimana seorang penguasa monarki pewaris menjadi pemimpin Persemakmuran Bahama. Penguasa monarki saat ininya adalah Ratu Elizabeth II,[1...

 

Daftar ini belum tentu lengkap. Anda dapat membantu Wikipedia dengan mengembangkannya. Berikut daftar tarian dari seluruh Indonesia berdasarkan abjad. Daftar mungkin belum lengkap. A Tari Andun Bengkulu Tari Angguk Yogyakarta Tari Angsa B Tari Badui Tari Baksa Kembang Tari Balean Dadas Tari Bali Tari Balumpa Tari Bambangan Cakil Tari Bangbarongan Tari Banjar Tari Banyumasan Tari Barongsai Tari Batu Nganga Tari Bedana Tari Bedhaya Tari Belian Tari Beksan Lawung Ageng Tari Bengberokan Tari Bida...

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Astronomi radio – berita · surat kabar · buku · cendekiawan · JSTOR Sebuah teleskop radio diKompleks Goldstone DSC Astronomi radio adalah cabang astronomi yang mempelajari fenomena benda angkasa melalui ...

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...

 

Double clôture électrifiée du camp Auschwitz I. Détail du monument antiguerre Mahnmal Bittermark (en), à Dortmund, Allemagne. Un camp de concentration est un lieu fermé de grande taille construit pour regrouper et pour détenir une population considérée comme ennemie, généralement dans de très mauvaises conditions de vie. Cette population peut se composer d'opposants politiques, de ressortissants de pays avec lesquels le pays d'accueil est en état de guerre, de groupes ethniq...

 

Pandemi koronavirus 2020 di NorwegiaPeta munisipalitas-munisipalitas dengan kasus koronavirus terkonfirmasi (merah) (pada 31 Maret)PenyakitCOVID-19Galur virusSARS-CoV-2LokasiNorwegiaKasus pertamaTromsøTanggal kemunculan26 Februari 2020(4 tahun, 1 bulan, 2 minggu dan 5 hari ago)AsalWuhan, Hubei, TiongkokKasus terkonfirmasi6.937[1]Kematian161[1] Pandemi koronavirus 2019–2020 dimulai di Norwegia pada 26 Februari 2020, dengan kasus berkembang pada bulan Mare...

This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Singuila – news · newspapers · books · scholar · JSTOR (June 2012) (Learn how and when to remove this message) You can help expand this article w...

 

American film and television screenwriter (1950–2015) Melissa MathisonMathison in 2015BornMelissa Marie Mathison[1](1950-06-03)June 3, 1950Los Angeles, California, U.S.DiedNovember 4, 2015(2015-11-04) (aged 65)Los Angeles, California, U.S.Alma materUniversity of California, BerkeleyOccupationScreenwriterYears active1979–2015Spouse Harrison Ford ​ ​(m. 1983; div. 2004)​Children2 Melissa Marie Mathison (June 3, 1950 – ...

 

Військово-музичне управління Збройних сил України Тип військове формуванняЗасновано 1992Країна  Україна Емблема управління Військово-музичне управління Збройних сил України — структурний підрозділ Генерального штабу Збройних сил України призначений для планува...

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要編修,以確保文法、用詞、语气、格式、標點等使用恰当。 (2013年8月6日)請按照校對指引,幫助编辑這個條目。(幫助、討論) 此條目剧情、虛構用語或人物介紹过长过细,需清理无关故事主轴的细节、用語和角色介紹。 (2020年10月6日)劇情、用語和人物介紹都只是用於了解故事主軸,輔助�...

 

Pour les articles homonymes, voir Sartre (homonymie). Maurice SartreMaurice Sartre en 2017.BiographieNaissance 3 octobre 1944 (79 ans)4e arrondissement de LyonNationalité françaiseActivité HistorienConjoint Annie Sartre-FauriatAutres informationsA travaillé pour Université de ToursDomaine histoire du Proche Orient antiqueMembre de Institut universitaire de FranceDistinctions Grand prix des Rendez-vous de l'histoire (2002)Prix Pierre-Lafue (2016)Chevalier des Arts et des Lettres (20...

 

This is a list of Sri Lanka Cricket lists, an article with a collection of lists relating to the Sri Lankan Cricket team. Teams Main article: List of Sri Lankan cricket teams Stadiums Main article: List of international cricket grounds in Sri Lanka Cricketers This section is empty. You can help by adding to it. (December 2022) Player statistics Batting List of international cricket centuries by Aravinda de Silva List of international cricket centuries by Kumar Sangakkara List of internationa...

This article is about the town in Alicante. For the municipality in Zaragoza, see La Joyosa. Not to be confused with Gioiosa. Municipality in Valencian Community, SpainVillajoyosaMunicipalityVillajoyosa/La Vila Joiosa FlagCoat of armsNickname: La VilaLocation of La Vila JoiosaVillajoyosaShow map of Valencian CommunityVillajoyosaShow map of SpainCoordinates: 38°30′19″N 0°13′58″W / 38.50528°N 0.23278°W / 38.50528; -0.23278Country SpainAutonomous com...

 

هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها. اختراع آلة الطباعة قى القرن الخامس عشر الميلادي مع أطقم الحروف المحمولة بواسطة الألماني يوهان غوتنبرغ وهذا يعتبر الحدث الأكثر تأثيرا في العصر الحديث.[1] الجدول الزمني لل�...

 

Historical aspect of modern-day Khyber Pakhtunkhwa, Pakistan Map of the present-day Khyber Pakhtunkhwa province (green), previously the North-West Frontier; and FATA (purple)vteInstability on the North-West Frontier Afghan-Sikh Wars (1800–1837) Battle of Attock Battle of Multan Battle of Shopian Battle of Nowshera Battle of Jamrud First Afghan War to Second Sikh War (1838–48) First Anglo-Afghan War Sindh Campaign First Anglo-Sikh War Second Anglo-Sikh War Second Sikh War to Sepoy Revolt (...

此條目需要补充更多来源。 (2015年11月26日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:英國歷史 — 网页、新闻、书籍、学术、图像),以检查网络上是否存在该主题的更多可靠来源(判定指引)。 系列条目不列顛群島歷史 史前 早期英格兰 早期苏格兰 早期愛爾蘭 古代 鐵器�...

 

Family of all-terrain utility vehicles A John Deere Gator converted into an ambulance: This vehicle is owned by Toronto District St. John Ambulance. The John Deere Gator is a family of small all-terrain utility vehicles produced by the John Deere Corporation. Gators typically feature a box bed, similar in function to a pickup truck. The bed can also be installed as an electric dump body. The John Deere Gator has been made in a variety of configurations, with either four, five or six wheels.&#...