Contraharmonic mean

In mathematics, a contraharmonic mean (or antiharmonic mean[1]) is a function complementary to the harmonic mean. The contraharmonic mean is a special case of the Lehmer mean, , where p = 2.

Definition

The contraharmonic mean of a set of positive real numbers[2] is defined as the arithmetic mean of the squares of the numbers divided by the arithmetic mean of the numbers:

Two-variable formulae

From the formulas for the arithmetic mean and harmonic mean of two variables we have:

Notice that for two variables the average of the harmonic and contraharmonic means is exactly equal to the arithmetic mean:

A(H(a, b), C(a, b)) = A(a, b)

As a gets closer to 0 then H(ab) also gets closer to 0. The harmonic mean is very sensitive to low values. On the other hand, the contraharmonic mean is sensitive to larger values, so as a approaches 0 then C(ab) approaches b (so their average remains A(ab)).

There are two other notable relationships between 2-variable means. First, the geometric mean of the arithmetic and harmonic means is equal to the geometric mean of the two values:

The second relationship is that the geometric mean of the arithmetic and contraharmonic means is the root mean square:

The contraharmonic mean of two variables can be constructed geometrically using a trapezoid.[3]

Additional constructions

The contraharmonic mean can be constructed on a circle similar to the way the Pythagorean means of two variables are constructed.[4] The contraharmonic mean is the remainder of the diameter on which the harmonic mean lies.[5]

History

The contraharmonic mean was discovered by the Greek mathematician Eudoxus in the 4th century BCE.[6]

Properties

The contraharmonic mean satisfies characteristic properties of a mean of some list of positive values :

The first property implies the fixed point property, that for all k > 0,

C(k, k, ..., k) = k

It is not monotonic − increasing a value of can decrease the value of the contraharmonic mean. For instance C(1, 4) > C(2, 4).

The contraharmonic mean is higher in value than the arithmetic mean and also higher than the root mean square: where x is a list of values, H is the harmonic mean, G is geometric mean, L is the logarithmic mean, A is the arithmetic mean, R is the root mean square and C is the contraharmonic mean. Unless all values of x are the same, the ≤ signs above can be replaced by <.

The name contraharmonic may be due to the fact that when taking the mean of only two variables, the contraharmonic mean is as high above the arithmetic mean as the arithmetic mean is above the harmonic mean (i.e., the arithmetic mean of the two variables is equal to the arithmetic mean of their harmonic and contraharmonic means).

Relationship to arithmetic mean and variance

The contraharmonic mean of a random variable is equal to the sum of the arithmetic mean and the variance divided by the arithmetic mean.[7]

The ratio of the variance and the arithmetic mean was proposed as a test statistic by Clapham.[8]

Since the variance is always ≥0 the contraharmonic mean is always greater than or equal to the arithmetic mean.

Other relationships

Any integer contraharmonic mean of two different positive integers is the hypotenuse of a Pythagorean triple, while any hypotenuse of a Pythagorean triple is a contraharmonic mean of two different positive integers.[1]

It is also related to Katz's statistic[9] where m is the mean, s2 the variance and n is the sample size.

Jn is asymptotically normally distributed with a mean of zero and variance of 1.

Uses in statistics

The problem of a size biased sample was discussed by Cox in 1969 on a problem of sampling fibres. The expectation of size biased sample is equal to its contraharmonic mean,[10] and the contraharmonic mean is also used to estimate bias fields in multiplicative models, rather than the arithmetic mean as used in additive models.[11]

The contraharmonic mean can be used to average the intensity value of neighbouring pixels in graphing, so as to reduce noise in images and make them clearer to the eye.[12]

The probability of a fibre being sampled is proportional to its length. Because of this the usual sample mean (arithmetic mean) is a biased estimator of the true mean. To see this consider where f(x) is the true population distribution, g(x) is the length weighted distribution and m is the sample mean. Taking the usual expectation of the mean here gives the contraharmonic mean rather than the usual (arithmetic) mean of the sample.[13] This problem can be overcome by taking instead the expectation of the harmonic mean (1/x). The expectation and variance of 1/x are and has variance where E is the expectation operator. Asymptotically E[1/x] is distributed normally.

The asymptotic efficiency of length biased sampling depends compared to random sampling on the underlying distribution. if f(x) is log normal the efficiency is 1 while if the population is gamma distributed with index b, the efficiency is b/(b − 1). This distribution has been used in modelling consumer behaviour[14] as well as quality sampling.

It has been used longside the exponential distribution in transport planning in the form of its inverse.[15]

See also

References

  1. ^ a b Pahikkala, Jussi (2010). "On contraharmonic mean and Pythagorean triples". Elemente der Mathematik. 65 (2): 62–67. doi:10.4171/em/141.
  2. ^ See "Means of Complex Numbers" (PDF). Texas College Mathematics Journal. 1 (1). January 1, 2005. Archived from the original (PDF) on September 9, 2006.
  3. ^ Umberger, Shannon. "Construction of the Contraharmonic Mean in a Trapezoid". University of Georgia.
  4. ^ Nelsen, Roger B. Proofs without Words/Exercises in Visual Thinking. p. 56. ISBN 0-88385-700-6.
  5. ^ Slaev, Valery A.; Chunovkina, Anna G.; Mironovsky, Leonid A. (2019). Metrology and Theory of Measurement. De Gruyter. p. 217. ISBN 9783110652505.
  6. ^ Antoine, C. (1998). Les Moyennes. Paris: Presses Unversitaires de France.
  7. ^ Kingley, Michael C.S. (1989). "The distribution of hauled out ringed seals an interpretation of Taylor's law". Oecologia. 79 (79): 106–110. doi:10.1007/BF00378246. PMID 28312819.
  8. ^ Clapham, Arthur Roy (1936). "Overdispersion in grassland communities and the use of statistical methods in plant ecology". The Journal of Ecology (14): 232. doi:10.2307/2256277. JSTOR 2256277.
  9. ^ Katz, L. (1965). United treatment of a broad class of discrete probability distributions. Proceedings of the International Symposium on Discrete Distributions. Montreal.
  10. ^ Zelen, Marvin (1972). Length-biased sampling and biomedical problems. Biometric Society Meeting. Dallas, Texas.
  11. ^ Banerjee, Abhirup; Maji, Pradipta (2013). Rough Sets for Bias Field Correction in MR Images Using Contraharmonic Mean and Quantitative Index. IEEE Transactions on Medical Imaging.
  12. ^ Mitra, Sabry (October 2021). "Contraharmonic Mean Filter". Kajian Ilmiah Informatika Dan Komputer. 2 (2): 75–79.
  13. ^ Sudman, Seymour (1980). Quota sampling techniques and weighting procedures to correct for frequency bias.
  14. ^ Keillor, Bruce D.; D'Amico, Michael; Horton, Veronica (2001). "Global Consumer Tendencies". Psychology and Marketing. 18 (1): 1–19. doi:10.1002/1520-6793(200101)18:1<1::AID-MAR1>3.0.CO;2-U.
  15. ^ Amreen, Mohammed; Venkateswarlu, Bandi (2024). "A New Way for Solving Transportation Issues Based on the Exponential Distribution and the Contraharmonic Mean". Journal of Applied Mathematics and Informatics. 42 (3): 647–661.

Read other articles:

Pertempuran Saint-Pol-de-LéonBagian dari Perang Suksesi BrittaniaPerang Seratus TahunTanggal9 Juni 1346LokasiSaint-Pol-de-Léon, Brittania PrancisHasil Kemenangan Inggris-BrittaniaPihak terlibat Wangsa Montfort Inggris Wangsa Blois PrancisTokoh dan pemimpin Sir Thomas Dagworth Charles dari BloisKekuatan 180 Tidak diketahui, ~1.000Korban Sangat sedikit Banyak lbsPerang Suksesi Brittania Champtoceaux Brest Morlaix Saint-Pol-de-Léon La Roche-Derrien Tiga Puluh Mauron Auray Pertempuran Saint-Po...

 

Pintu masuk. Benteng Lille (Prancis: Citadelle de Lillecode: fr is deprecated ; Belanda: Citadel van Rijselcode: nl is deprecated ) adalah sebuah benteng berbentuk segi lima yang terletak di tembok kota Lille, Prancis. Benteng ini dibangun dari tahun 1667 hingga 1670.[1] Benteng ini merupakan markas Corps de réaction rapide France.[2] Benteng ini dijuluki Ratu Benteng-Benteng (Reine des citadelles) oleh Vauban dan merupakan salah satu benteng terpenting yang dirancang oleh Va...

 

هذه مقالة غير مراجعة. ينبغي أن يزال هذا القالب بعد أن يراجعها محرر؛ إذا لزم الأمر فيجب أن توسم المقالة بقوالب الصيانة المناسبة. يمكن أيضاً تقديم طلب لمراجعة المقالة في الصفحة المخصصة لذلك. (أكتوبر 2020) هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة �...

Deep bay of the Southern Ocean in Antarctica Ross SeaSea ice in the Ross SeaRoss SeaSeas of Antarctica, with the Ross Sea in the bottom-leftLocationAntarcticaCoordinates75°S 175°W / 75°S 175°W / -75; -175TypeSeaEtymologyJames RossPrimary outflowsSouthern Ocean The Ross Sea is a deep bay of the Southern Ocean in Antarctica, between Victoria Land and Marie Byrd Land and within the Ross Embayment, and is the southernmost sea on Earth. It derives its name from the Brit...

 

Polynesian island country This article is about the nation of Samoa. For the geographical region, see Samoan Islands. For the Samoan United States territory, see American Samoa. For other uses, see Samoa (disambiguation). Independent State of SamoaMalo Saʻoloto Tutoʻatasi o Sāmoa (Samoan) Flag Coat of arms Motto: Faʻavae i le Atua SāmoaSamoa is founded on GodAnthem: O Le Fuʻa o le Saʻolotoga o SamoaThe Banner of FreedomLocation of SamoaMap of SamoaCapitaland largest city...

 

Salah satu bangunan yang terletak di Jalan Boulevard Kelapa Gading, Mal Kelapa Gading. Jalan Boulevard Kelapa Gading atau Jalan Boulevard Raya adalah salah satu jalan di Jakarta. Jalan ini terbagi menjadi Jalan Boulevard Utara dan Jalan Boulevard Selatan yang dibatasi oleh Bundaran Taman Joging Kelapa Gading. Jalan ini menghubungkan Jalan Perintis Kemerdekaan dan Jalan Kayu Putih Raya dengan kawasan Kelapa Gading. Jalan ini membentang sepanjang 4,3 kilometer dari persimpangan Lampu Merah Kela...

† Человек прямоходящий Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:Синапсиды�...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: List of Hindi films of 1977 – news · newspapers · books · scholar · JSTOR (February 2019) (Learn how and when to remove this template message) Hindi cinema 1920s 1920 1921 1922 1923 19241925 1926 1927 1928 1929 1930s 1930 1931 1932 1933 19341935 1936 1937 1938...

 

Reproductive system of the human male This article is about the human male reproductive system. For the male reproductive systems of other organisms, see reproductive system. Male reproductive system (human)Male reproductive systemDetailsIdentifiersLatinsystema genitale masculinumMeSHD005837TA98A09.0.00.002TA23574FMA45664Anatomical terminology[edit on Wikidata] The male reproductive system consists of a number of sex organs that play a role in the process of human reproduction. These orga...

Satoshi ŌmuraLahir12 Juli 1935 (umur 88)Nirasaki, Yamanashi, JepangKebangsaanJepangAlmamaterUniversitas YamanashiUniversitas Sains Tokyo (M.S., Sc. D.)Universitas Tokyo (Ph.D.)Dikenal atasAvermektin dan IvermektinPenghargaanHadiah Akademi Jepang (1990)Medali Emas Koch (1997)Penghargaan Kesehatan Global Gairdner (2014)Hadiah Nobel Fisiologi atau Kedokteran (2015)Karier ilmiahBidangBiokimiaInstitusiUniversitas KitasatoUniversitas Wesleyan Satoshi Ōmura (lahir 12 Juli 1935) adalah seoran...

 

Re-enactment of the first public demonstration of general anesthesia by William T. G. Morton on October 16, 1846, in the Ether Dome at Massachusetts General Hospital, Boston. Surgeons John Collins Warren and Henry Jacob Bigelow are included in this daguerrotype by Southworth & Hawes. The Bulfinch Building, home of the Ether Dome Throughout recorded history, attempts at producing a state of general anesthesia can be traced back to the writings of ancient Sumerians, Babylonians, Assyrians,...

 

Calligraphy with Chinese script Shufa redirects here. For the concept in islam, see Shufa (Islam). Chinese calligraphyChinese nameTraditional Chinese書法法書Simplified Chinese书法法书TranscriptionsStandard MandarinHanyu PinyinshūfǎfǎshūBopomofoㄕㄨ ㄈㄚˇㄈㄚˇ ㄕㄨWade–Gilesshu1-fa3fa3-shu1Tongyong Pinyinshu-fǎfǎ-shuIPA[ʂú.fà][fà.ʂú]WuRomanizationsy平 fah入fah入 sy平HakkaRomanizationsu24 fab2Yue: CantoneseYale Romanizationsyū-faatfa...

Державний комітет телебачення і радіомовлення України (Держкомтелерадіо) Приміщення комітетуЗагальна інформаціяКраїна  УкраїнаДата створення 2003Керівне відомство Кабінет Міністрів УкраїниРічний бюджет 1 964 898 500 ₴[1]Голова Олег НаливайкоПідвідомчі ор...

 

2007 novel by Trevor Baxendale The topic of this article may not meet Wikipedia's notability guideline for books. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be merged, redirected, or deleted.Find sources: War of the Robots adventure book – news · newspapers...

 

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...

County in the US that forbids the sale of alcoholic beverages This article is about counties in the U.S. that prohibit alcoholic beverage sales. For the Bon Jovi song, see Dry County (song). For The B-52s song, see Dry County (The B-52s song). Map of alcohol control laws in the United States:Red = dry counties, where selling alcohol is prohibitedYellow = semi-dry counties, where some restrictions applyBlue = no restrictions In the United States, a dry county is a county whose government forbi...

 

Structure built to span physical obstacles This article is about the structure. For the card game, see Contract bridge. For other uses, see Bridge (disambiguation) and Bridges (disambiguation). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Bridge – news · newspapers · books · scholar · JSTOR (July 2022) (L...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (سبتمبر 2022) مصطفى عصام معلومات شخصية الاسم الكامل مصطفى عصام أسامة أبو العلا الميلاد 20 مايو 2003 (21 سنة)  مصر  مركز اللعب لاعب وسط  الجنسية مصر قطر  معلومات الناد...

فَتْقٌ فَخِذيّ معلومات عامة الاختصاص طب الجهاز الهضمي  تعديل مصدري - تعديل   ينتج الفَتْق عن بروز عضو من خلال ضعف في الجدار الحاوي له. قد يكون هذا الضَّعف موروثًا، كما في حالة الفتق الإربي، والفتق الفخذي والفتق السري. ومن ناحية أخرى، قد يكون الضعف ناجمًا عن شق جراحي �...

 

Public research institute in Nevada, U.S. Desert Research InstituteEstablishedMarch 23, 1959; 65 years ago (1959-03-23)[1]Parent institutionNevada System of Higher EducationPresidentKumud Acharya[2]Academic staff500[3]Address2215 Raggio Parkway, Reno, Nevada, 89512, United StatesWebsitedri.edu Desert Research Institute (DRI) is the nonprofit research campus of the Nevada System of Higher Education (NSHE) and sister property of the University of Nevada...