Simultaneous equations model

Simultaneous equations models are a type of statistical model in which the dependent variables are functions of other dependent variables, rather than just independent variables.[1] This means some of the explanatory variables are jointly determined with the dependent variable, which in economics usually is the consequence of some underlying equilibrium mechanism. Take the typical supply and demand model: whilst typically one would determine the quantity supplied and demanded to be a function of the price set by the market, it is also possible for the reverse to be true, where producers observe the quantity that consumers demand and then set the price.[2]

Simultaneity poses challenges for the estimation of the statistical parameters of interest, because the Gauss–Markov assumption of strict exogeneity of the regressors is violated. And while it would be natural to estimate all simultaneous equations at once, this often leads to a computationally costly non-linear optimization problem even for the simplest system of linear equations.[3] This situation prompted the development, spearheaded by the Cowles Commission in the 1940s and 1950s,[4] of various techniques that estimate each equation in the model seriatim, most notably limited information maximum likelihood and two-stage least squares.[5]

Structural and reduced form

Suppose there are m regression equations of the form

where i is the equation number, and t = 1, ..., T is the observation index. In these equations xit is the ki×1 vector of exogenous variables, yit is the dependent variable, y−i,t is the ni×1 vector of all other endogenous variables which enter the ith equation on the right-hand side, and uit are the error terms. The “−i” notation indicates that the vector y−i,t may contain any of the y’s except for yit (since it is already present on the left-hand side). The regression coefficients βi and γi are of dimensions ki×1 and ni×1 correspondingly. Vertically stacking the T observations corresponding to the ith equation, we can write each equation in vector form as

where yi and ui are 1 vectors, Xi is a T×ki matrix of exogenous regressors, and Y−i is a T×ni matrix of endogenous regressors on the right-hand side of the ith equation. Finally, we can move all endogenous variables to the left-hand side and write the m equations jointly in vector form as

This representation is known as the structural form. In this equation Y = [y1 y2 ... ym] is the T×m matrix of dependent variables. Each of the matrices Y−i is in fact an ni-columned submatrix of this Y. The m×m matrix Γ, which describes the relation between the dependent variables, has a complicated structure. It has ones on the diagonal, and all other elements of each column i are either the components of the vector −γi or zeros, depending on which columns of Y were included in the matrix Y−i. The T×k matrix X contains all exogenous regressors from all equations, but without repetitions (that is, matrix X should be of full rank). Thus, each Xi is a ki-columned submatrix of X. Matrix Β has size k×m, and each of its columns consists of the components of vectors βi and zeros, depending on which of the regressors from X were included or excluded from Xi. Finally, U = [u1 u2 ... um] is a T×m matrix of the error terms.

Postmultiplying the structural equation by Γ −1, the system can be written in the reduced form as

This is already a simple general linear model, and it can be estimated for example by ordinary least squares. Unfortunately, the task of decomposing the estimated matrix into the individual factors Β and Γ −1 is quite complicated, and therefore the reduced form is more suitable for prediction but not inference.

Assumptions

Firstly, the rank of the matrix X of exogenous regressors must be equal to k, both in finite samples and in the limit as T → ∞ (this later requirement means that in the limit the expression should converge to a nondegenerate k×k matrix). Matrix Γ is also assumed to be non-degenerate.

Secondly, error terms are assumed to be serially independent and identically distributed. That is, if the tth row of matrix U is denoted by u(t), then the sequence of vectors {u(t)} should be iid, with zero mean and some covariance matrix Σ (which is unknown). In particular, this implies that E[U] = 0, and E[U′U] = T Σ.

Lastly, assumptions are required for identification.

Identification

The identification conditions require that the system of linear equations be solvable for the unknown parameters.

More specifically, the order condition, a necessary condition for identification, is that for each equation ki + ni ≤ k, which can be phrased as “the number of excluded exogenous variables is greater or equal to the number of included endogenous variables”.

The rank condition, a stronger condition which is necessary and sufficient, is that the rank of Πi0 equals ni, where Πi0 is a (k − kini matrix which is obtained from Π by crossing out those columns which correspond to the excluded endogenous variables, and those rows which correspond to the included exogenous variables.

Using cross-equation restrictions to achieve identification

In simultaneous equations models, the most common method to achieve identification is by imposing within-equation parameter restrictions.[6] Yet, identification is also possible using cross equation restrictions.

To illustrate how cross equation restrictions can be used for identification, consider the following example from Wooldridge[6]

where z's are uncorrelated with u's and y's are endogenous variables. Without further restrictions, the first equation is not identified because there is no excluded exogenous variable. The second equation is just identified if δ13≠0, which is assumed to be true for the rest of discussion.

Now we impose the cross equation restriction of δ12=δ22. Since the second equation is identified, we can treat δ12 as known for the purpose of identification. Then, the first equation becomes:

Then, we can use (z1, z2, z3) as instruments to estimate the coefficients in the above equation since there are one endogenous variable (y2) and one excluded exogenous variable (z2) on the right hand side. Therefore, cross equation restrictions in place of within-equation restrictions can achieve identification.

Estimation

Two-stage least squares (2SLS)

The simplest and the most common estimation method for the simultaneous equations model is the so-called two-stage least squares method,[7] developed independently by Theil (1953) and Basmann (1957).[8][9][10] It is an equation-by-equation technique, where the endogenous regressors on the right-hand side of each equation are being instrumented with the regressors X from all other equations. The method is called “two-stage” because it conducts estimation in two steps:[7]

Step 1: Regress Y−i on X and obtain the predicted values ;
Step 2: Estimate γi, βi by the ordinary least squares regression of yi on and Xi.

If the ith equation in the model is written as

where Zi is a (ni + ki) matrix of both endogenous and exogenous regressors in the ith equation, and δi is an (ni + ki)-dimensional vector of regression coefficients, then the 2SLS estimator of δi will be given by[7]

where P = X (X ′X)−1X ′ is the projection matrix onto the linear space spanned by the exogenous regressors X.

Indirect least squares

Indirect least squares is an approach in econometrics where the coefficients in a simultaneous equations model are estimated from the reduced form model using ordinary least squares.[11][12] For this, the structural system of equations is transformed into the reduced form first. Once the coefficients are estimated the model is put back into the structural form.

Limited information maximum likelihood (LIML)

The “limited information” maximum likelihood method was suggested by M. A. Girshick in 1947,[13] and formalized by T. W. Anderson and H. Rubin in 1949.[14] It is used when one is interested in estimating a single structural equation at a time (hence its name of limited information), say for observation i:

The structural equations for the remaining endogenous variables Y−i are not specified, and they are given in their reduced form:

Notation in this context is different than for the simple IV case. One has:

  • : The endogenous variable(s).
  • : The exogenous variable(s)
  • : The instrument(s) (often denoted )

The explicit formula for the LIML is:[15]

where M = I − X (X ′X)−1X ′, and λ is the smallest characteristic root of the matrix:

where, in a similar way, Mi = I − Xi (XiXi)−1Xi.

In other words, λ is the smallest solution of the generalized eigenvalue problem, see Theil (1971, p. 503):

K class estimators

The LIML is a special case of the K-class estimators:[16]

with:

Several estimators belong to this class:

  • κ=0: OLS
  • κ=1: 2SLS. Note indeed that in this case, the usual projection matrix of the 2SLS
  • κ=λ: LIML
  • κ=λ - α / (n-K): Fuller (1977) estimator.[17] Here K represents the number of instruments, n the sample size, and α a positive constant to specify. A value of α=1 will yield an estimator that is approximately unbiased.[16]

Three-stage least squares (3SLS)

The three-stage least squares estimator was introduced by Zellner & Theil (1962).[18][19] It can be seen as a special case of multi-equation GMM where the set of instrumental variables is common to all equations.[20] If all regressors are in fact predetermined, then 3SLS reduces to seemingly unrelated regressions (SUR). Thus it may also be seen as a combination of two-stage least squares (2SLS) with SUR.

Applications in social science

Across fields and disciplines simultaneous equation models are applied to various observational phenomena. These equations are applied when phenomena are assumed to be reciprocally causal. The classic example is supply and demand in economics. In other disciplines there are examples such as candidate evaluations and party identification[21] or public opinion and social policy in political science;[22][23] road investment and travel demand in geography;[24] and educational attainment and parenthood entry in sociology or demography.[25] The simultaneous equation model requires a theory of reciprocal causality that includes special features if the causal effects are to be estimated as simultaneous feedback as opposed to one-sided 'blocks' of an equation where a researcher is interested in the causal effect of X on Y while holding the causal effect of Y on X constant, or when the researcher knows the exact amount of time it takes for each causal effect to take place, i.e., the length of the causal lags. Instead of lagged effects, simultaneous feedback means estimating the simultaneous and perpetual impact of X and Y on each other. This requires a theory that causal effects are simultaneous in time, or so complex that they appear to behave simultaneously; a common example are the moods of roommates.[26] To estimate simultaneous feedback models a theory of equilibrium is also necessary – that X and Y are in relatively steady states or are part of a system (society, market, classroom) that is in a relatively stable state.[27]

See also

References

  1. ^ Martin, Vance; Hurn, Stan; Harris, David (2013). Econometric Modelling with Time Series. Cambridge University Press. p. 159. ISBN 978-0-521-19660-4.
  2. ^ Maddala, G. S.; Lahiri, Kajal (2009). Introduction to Econometrics (Fourth ed.). Wiley. pp. 355–357. ISBN 978-0-470-01512-4.
  3. ^ Quandt, Richard E. (1983). "Computational Problems and Methods". In Griliches, Z.; Intriligator, M. D. (eds.). Handbook of Econometrics. Vol. I. North-Holland. pp. 699–764. ISBN 0-444-86185-8.
  4. ^ Christ, Carl F. (1994). "The Cowles Commission's Contributions to Econometrics at Chicago, 1939–1955". Journal of Economic Literature. 32 (1): 30–59. JSTOR 2728422.
  5. ^ Johnston, J. (1971). "Simultaneous-equation Methods: Estimation". Econometric Methods (Second ed.). New York: McGraw-Hill. pp. 376–423. ISBN 0-07-032679-7.
  6. ^ a b Wooldridge, J.M., Econometric Analysis of Cross Section and Panel Data, MIT Press, Cambridge, Mass.
  7. ^ a b c Greene, William H. (2002). Econometric analysis (5th ed.). Prentice Hall. pp. 398–99. ISBN 0-13-066189-9.
  8. ^ Theil, H. (1953). Estimation and Simultaneous Correlation in Complete Equation Systems (Memorandum). Central Planning Bureau. Reprinted in Henri Theil’s Contributions to Economics and Econometrics (Springer, 1992), doi:10.1007/978-94-011-2546-8_6.
  9. ^ Basmann, R. L. (1957). "A generalized classical method of linear estimation of coefficients in a structural equation". Econometrica. 25 (1): 77–83. doi:10.2307/1907743. JSTOR 1907743.
  10. ^ Theil, Henri (1971). Principles of Econometrics. New York: John Wiley. ISBN 978-0-471-85845-4.
  11. ^ Park, S-B. (1974) "On Indirect Least Squares Estimation of a Simultaneous Equation System", The Canadian Journal of Statistics / La Revue Canadienne de Statistique, 2 (1), 75–82 JSTOR 3314964
  12. ^ Vajda, S.; Valko, P.; Godfrey, K.R. (1987). "Direct and indirect least squares methods in continuous-time parameter estimation". Automatica. 23 (6): 707–718. doi:10.1016/0005-1098(87)90027-6.
  13. ^ First application by Girshick, M. A.; Haavelmo, Trygve (1947). "Statistical Analysis of the Demand for Food: Examples of Simultaneous Estimation of Structural Equations". Econometrica. 15 (2): 79–110. doi:10.2307/1907066. JSTOR 1907066.
  14. ^ Anderson, T.W.; Rubin, H. (1949). "Estimator of the parameters of a single equation in a complete system of stochastic equations". Annals of Mathematical Statistics. 20 (1): 46–63. doi:10.1214/aoms/1177730090. JSTOR 2236803.
  15. ^ Amemiya, Takeshi (1985). Advanced Econometrics. Cambridge, Massachusetts: Harvard University Press. p. 235. ISBN 0-674-00560-0.
  16. ^ a b Davidson, Russell; MacKinnon, James G. (1993). Estimation and inference in econometrics. Oxford University Press. p. 649. ISBN 0-19-506011-3.
  17. ^ Fuller, Wayne (1977). "Some Properties of a Modification of the Limited Information Estimator". Econometrica. 45 (4): 939–953. doi:10.2307/1912683. JSTOR 1912683.
  18. ^ Zellner, Arnold; Theil, Henri (1962). "Three-stage least squares: simultaneous estimation of simultaneous equations". Econometrica. 30 (1): 54–78. doi:10.2307/1911287. JSTOR 1911287.
  19. ^ Kmenta, Jan (1986). "System Methods of Estimation". Elements of Econometrics (Second ed.). New York: Macmillan. pp. 695–701. ISBN 9780023650703.
  20. ^ Hayashi, Fumio (2000). "Multiple-Equation GMM". Econometrics. Princeton University Press. pp. 276–279. ISBN 1400823838.
  21. ^ Page, Benjamin I.; Jones, Calvin C. (1979-12-01). "Reciprocal Effects of Policy Preferences, Party Loyalties and the Vote". American Political Science Review. 73 (4): 1071–1089. doi:10.2307/1953990. ISSN 0003-0554. JSTOR 1953990. S2CID 144984371.
  22. ^ Wlezien, Christopher (1995-01-01). "The Public as Thermostat: Dynamics of Preferences for Spending". American Journal of Political Science. 39 (4): 981–1000. doi:10.2307/2111666. JSTOR 2111666.
  23. ^ Breznau, Nate (2016-07-01). "Positive Returns and Equilibrium: Simultaneous Feedback Between Public Opinion and Social Policy". Policy Studies Journal. 45 (4): 583–612. doi:10.1111/psj.12171. ISSN 1541-0072.
  24. ^ Xie, F.; Levinson, D. (2010-05-01). "How streetcars shaped suburbanization: a Granger causality analysis of land use and transit in the Twin Cities". Journal of Economic Geography. 10 (3): 453–470. doi:10.1093/jeg/lbp031. hdl:11299/179996. ISSN 1468-2702.
  25. ^ Marini, Margaret Mooney (1984-01-01). "Women's Educational Attainment and the Timing of Entry into Parenthood". American Sociological Review. 49 (4): 491–511. doi:10.2307/2095464. JSTOR 2095464.
  26. ^ Wong, Chi-Sum; Law, Kenneth S. (1999-01-01). "Testing Reciprocal Relations by Nonrecursive Structuralequation Models Using Cross-Sectional Data". Organizational Research Methods. 2 (1): 69–87. doi:10.1177/109442819921005. ISSN 1094-4281. S2CID 122284566.
  27. ^ 2013. “Reverse Arrow Dynamics: Feedback Loops and Formative Measurement.” In Structural Equation Modeling: A Second Course, edited by Gregory R. Hancock and Ralph O. Mueller, 2nd ed., 41–79. Charlotte, NC: Information Age Publishing

Further reading

Read other articles:

Kejadian 1Pasal pertama kitab B'reshit, atau Kitab Kejadian, ditulis pada sebutir telur, koleksi Museum Israel.KitabKitab KejadianKategoriTauratBagian Alkitab KristenPerjanjian LamaUrutan dalamKitab Kristen1← Permulaan pasal 2 → Kejadian 1 (disingkat Kej 1) adalah pasal pertama Kitab Kejadian dalam Alkitab Ibrani dan Perjanjian Lama di Alkitab Kristen. Termasuk dalam kumpulan kitab Taurat yang disusun oleh Musa.[1] Pasal ini berisi kisah penciptaan dunia dalam 6 hari, bagi...

 

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Perusahaan multinasional – berita · surat kabar · buku · cendekiawan · JSTOR Perusahaan multinasional atau PMN adalah perusahaan yang ber-usaha di banyak negara; perusahaan ini biasanya sangat besar. Per...

 

 

Football match1890 All-Ireland Senior Football FinalEvent1890 All-Ireland Senior Football Championship Cork Wexford 2-4(10) 0-1(1) Date26 June 1892VenueClonturk Park, DublinRefereeJ.J. Kenny (Dublin)Attendance1,000← 1889 1891 → The 1890 All-Ireland Senior Football Championship final was a Gaelic football match played at Clonturk Park on 26 June 1892 to determine the winners of the 1890 All-Ireland Senior Football Championship, the 4th season of the All-Ireland Senior Football Cha...

48°22′39″LU,17°35′18″BT Trnava (bahasa Hungaria: Nagyszombat, bahasa Jerman: Tyrnau) merupakan nama kota di Slowakia. Letaknya di bagian barat. Tepatnya di Region Trnava. Pada tahun 2005, kota ini memiliki jumlah penduduk sebanyak 68.292 jiwa dan memiliki luas wilayah 71,53 km2. Kota kembar Scranton, Pennsylvania, Amerika Serikat Varaždin, Kroasia Pranala luar Wikimedia Commons memiliki media mengenai Trnava. Situs resmi Universitas Trnava Artikel bertopik Eropa ini adalah seb...

 

 

Award Saturn Award for Best Supporting ActressAwarded forBest performance of the year by a female in a supporting role in a genre filmCountryUnited StatesPresented byAcademy of Science Fiction, Fantasy and Horror FilmsFirst awarded1974/75Currently held byEmily Blunt for Oppenheimer (2022/2023)Websitewww.saturnawards.org The following is a list of Saturn Award nominees and winners for Best Supporting Actress, which rewards the best female supporting performance in a genre film. Anne Ramsey, Ti...

 

 

Это статья о китайском математике Сунь Цзы. Об одноименном китайском стратеге и военачальнике см. Сунь Цзы. Сунь Цзы (кит. трад. 孫子, упр. 孙子, пиньинь sūn zǐ) — китайский математик и астроном, автор трактата «Сунь Цзы Суань Цзин» (кит. трад. 孫子算經, упр. 孙子算经, пиньинь s�...

Award for victors of the FIFA World Cup FIFA World Cup TrophyFIFA World Cup TrophyAwarded forWinning the FIFA World CupPresented byFIFAHistoryFirst award1930 (Jules Rimet Trophy) 1974 (FIFA World Cup Trophy)First winner  Uruguay (Jules Rimet Trophy, 1930)  West Germany (FIFA World Cup Trophy, 1974) Most wins Brazil (5 times)Most recent Argentina (3rd title, 2022)Websitefifa.com The FIFA World Cup is a solid gold trophy that is awarded to the winners of the FIFA World Cup a...

 

 

Russian footballer (born 1986) In this name that follows Eastern Slavic naming customs, the patronymic is Vladimirovich and the family name is Akinfeev. Igor Akinfeev Akinfeev with CSKA Moscow in 2020Personal informationFull name Igor Vladimirovich AkinfeevDate of birth (1986-04-08) 8 April 1986 (age 38)[1]Place of birth Vidnoye, Russian SFSR, Soviet UnionHeight 1.85 m (6 ft 1 in)[2]Position(s) GoalkeeperTeam informationCurrent team CSKA MoscowNumber 35...

 

 

Indian folklorist Joravarsinh JadavBorn (1940-01-10) 10 January 1940 (age 84)Akru, Dhandhuka, British IndiaOccupationVice-chairman of Sangeet Natak Academi, FolkloristLanguageGujaratiNationalityIndianNotable awardsPadma Shri (2019)Spouse Sajjankunwarba ​ ​(m. 1963; died 1968)​ Hemkunwarba ​(m. 1969)​Signature Joravarsinh Danubhai Jadav (born 10 January 1940) is an Indian folklorist and proponent of the folk art...

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...

 

 

A Couple of CuckoosSampul volume manga pertama A Couple of Cuckoos edisi bahasa Indonesia oleh Elex Media Komputindo yang menampilkan Nagi Umino (kiri) dan Erika Amano (kanan)カッコウの許嫁(Kakkō no Iinazuke)GenreKomedi romantis[1] MangaPengarangMiki YoshikawaPenerbitKodanshaPenerbit bahasa InggrisNA Kodansha USAPenerbit bahasa IndonesiaElex Media KomputindoMajalahWeekly Shōnen MagazineDemografiShōnenTerbit29 Januari 2020 – sekarangVolume22 Seri animeSutradaraHiroaki Akagi...

 

 

Saluran napasBagian-bagianRincianSistemSistem pernapasanPengidentifikasiFMA265130Daftar istilah anatomi[sunting di Wikidata] Sistem pernapasan lengkap. Saluran napas adalah subdivisi dari sistem pernapasan yang terlibat dalam proses pernapasan dari mamalia.[1] Saluran pernapasan dilapisi dengan mukosa pernapasan atau epitel pernapasan.[2] Referensi ^ Patwa, A; Shah, A (September 2015). Anatomy and physiology of respiratory system relevant to anaesthesia. Indian journal of ...

Розділ Вікіпедії: СальвадорПроєкт  |  Портал Портал Сальвадор Ласкаво просимо до порталу «Сальвадор»[ред.] Сальвадо́р, офіційна назва Респу́бліка Ель-Сальвадо́р (з ісп. El Salvador — Спаситель) — країна Центральної Америки. Столиця та найбільше місто Саль�...

 

 

Passerine species of bird native to the Chatham Islands For the Turdus thrush of Central America, see Black thrush. Black robin Conservation status Vulnerable  (IUCN 3.1)[1] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Aves Order: Passeriformes Infraorder: Passerides Family: Petroicidae Genus: Petroica Species: P. traversi Binomial name Petroica traversi(Buller, 1872) Synonyms Miro traversi The black robin or Chatham Island robin (Mor...

 

 

2006 film by Wolfgang Busch For the Style Network makeover show, see How Do I Look? How Do I LookDirected by Wolfgang Busch Kevin Omni (assistant) Luna Khan (assistant) Produced byWolfgang BuschStarring Kevin Aviance Pepper LaBeija Willi Ninja Octavia St. Laurent Emanuel Xavier Salaudin Muhammad CinematographyWolfgang BuschEdited by Wolfgang Busch Darryl Hell Gregg Payne Music by Tori Fixx Michael O'Hara Harmonica Sunbeam Distributed byArt From the Heart FilmsRelease date June 4, 20...

Alexandre de Serpa Pinto Información personalNombre en portugués Alexandre Alberto da Rocha de Serpa Pinto Nacimiento 20 de abril de 1846 Cinfães (Portugal) Fallecimiento 28 de diciembre de 1900 (54 años)Lisboa (Portugal) EducaciónEducado en Universidad de CoímbraUniversidad Estatal de California, Los Ángeles (Ingeniero industrial)Colégio Militar Información profesionalOcupación Explorador y militar Distinciones Medalla del Fundador (RGS) (1881)Condecoración de Estado...

 

 

طواف رواندا 2020 تفاصيل السباقسلسلة23. طواف رواندامنافسةطواف إفريقيا للدراجات 2020 2.1‏مراحل8التواريخ23 فبراير – 01 مارس 2020المسافات889 كمالبلد رواندانقطة البدايةكيغالينقطة النهايةكيغاليالفرق16متوسط السرعة38٫29 كم/سالمنصةالفائز Natnael Tesfatsion [الإنجليزية]‏ (2020 فريق إرتريا لرك...

 

 

Initial step in the phase transition or molecular self-assembly of a substance When sugar is supersaturated in water, nucleation will occur, allowing sugar molecules to stick together and form large crystal structures. In thermodynamics, nucleation is the first step in the formation of either a new thermodynamic phase or structure via self-assembly or self-organization within a substance or mixture. Nucleation is typically defined to be the process that determines how long an observer has to ...

В Википедии есть статьи о других людях с такой фамилией, см. Барбович. Иван Гаврилович Барбович Дата рождения 27 января (8 февраля) 1874(1874-02-08) Место рождения Полтавская губерния Дата смерти 21 марта 1947(1947-03-21) (73 года) Место смерти Мюнхен, Германия Род деятельности военнос�...

 

 

حسن موبيرو معلومات شخصية تاريخ الميلاد 16 ديسمبر 1978 (العمر 45 سنة) مركز اللعب مهاجم  الجنسية أوغندا  المواقع مُعرِّف موقع football-teams 6887  تعديل مصدري - تعديل   حسن موبيرو (بالإنجليزية: Hassan Mubiru)‏ (مواليد 16 ديسمبر 1978 في كمبالا) لاعب كرة قدم أوغندي دولي يجيد اللعب في مركز اله...