Scale parameter

In probability theory and statistics, a scale parameter is a special kind of numerical parameter of a parametric family of probability distributions. The larger the scale parameter, the more spread out the distribution.

Definition

If a family of probability distributions is such that there is a parameter s (and other parameters θ) for which the cumulative distribution function satisfies

then s is called a scale parameter, since its value determines the "scale" or statistical dispersion of the probability distribution. If s is large, then the distribution will be more spread out; if s is small then it will be more concentrated.

Animation showing the effects of a scale parameter on a probability distribution supported on the positive real line.
Effect of a scale parameter over a mixture of two normal probability distributions

If the probability density exists for all values of the complete parameter set, then the density (as a function of the scale parameter only) satisfies

where f is the density of a standardized version of the density, i.e. .

An estimator of a scale parameter is called an estimator of scale.

Families with Location Parameters

In the case where a parametrized family has a location parameter, a slightly different definition is often used as follows. If we denote the location parameter by , and the scale parameter by , then we require that where is the cmd for the parametrized family.[1] This modification is necessary in order for the standard deviation of a non-central Gaussian to be a scale parameter, since otherwise the mean would change when we rescale . However, this alternative definition is not consistently used.[2]

Simple manipulations

We can write in terms of , as follows:

Because f is a probability density function, it integrates to unity:

By the substitution rule of integral calculus, we then have

So is also properly normalized.

Rate parameter

Some families of distributions use a rate parameter (or inverse scale parameter), which is simply the reciprocal of the scale parameter. So for example the exponential distribution with scale parameter β and probability density

could equivalently be written with rate parameter λ as

Examples

  • The uniform distribution can be parameterized with a location parameter of and a scale parameter .
  • The normal distribution has two parameters: a location parameter and a scale parameter . In practice the normal distribution is often parameterized in terms of the squared scale , which corresponds to the variance of the distribution.
  • The gamma distribution is usually parameterized in terms of a scale parameter or its inverse.
  • Special cases of distributions where the scale parameter equals unity may be called "standard" under certain conditions. For example, if the location parameter equals zero and the scale parameter equals one, the normal distribution is known as the standard normal distribution, and the Cauchy distribution as the standard Cauchy distribution.

Estimation

A statistic can be used to estimate a scale parameter so long as it:

  • Is location-invariant,
  • Scales linearly with the scale parameter, and
  • Converges as the sample size grows.

Various measures of statistical dispersion satisfy these. In order to make the statistic a consistent estimator for the scale parameter, one must in general multiply the statistic by a constant scale factor. This scale factor is defined as the theoretical value of the value obtained by dividing the required scale parameter by the asymptotic value of the statistic. Note that the scale factor depends on the distribution in question.

For instance, in order to use the median absolute deviation (MAD) to estimate the standard deviation of the normal distribution, one must multiply it by the factor

where Φ−1 is the quantile function (inverse of the cumulative distribution function) for the standard normal distribution. (See MAD for details.) That is, the MAD is not a consistent estimator for the standard deviation of a normal distribution, but 1.4826... MAD is a consistent estimator. Similarly, the average absolute deviation needs to be multiplied by approximately 1.2533 to be a consistent estimator for standard deviation. Different factors would be required to estimate the standard deviation if the population did not follow a normal distribution.

See also

References

  1. ^ Prokhorov, A.V. (7 February 2011). "Scale parameter". Encyclopedia of Mathematics. Springer. Retrieved 7 February 2019.
  2. ^ Koski, Timo. "Scale parameter". KTH Royal Institute of Technology. Retrieved 7 February 2019.

Further reading

  • Mood, A. M.; Graybill, F. A.; Boes, D. C. (1974). "VII.6.2 Scale invariance". Introduction to the theory of statistics (3rd ed.). New York: McGraw-Hill.

Read other articles:

PatikrajaDesaBalai Desa PatikrajaNegara IndonesiaProvinsiJawa TengahKabupatenBanyumasKecamatanPatikrajaKode Kemendagri33.02.12.2004 Luas... km²Jumlah penduduk... jiwaKepadatan... jiwa/km² Patikraja adalah desa di kecamatan Patikraja, Banyumas, Jawa Tengah, Indonesia. Lokasi Patikraja berada di sebelah selatan Gunung Slamet (80 km),tepatnya 8KM kearah selatan Kota Purwokerto. Geografis Keadaan geografis wilayah Desa Patikraja seperti di tengah sebuah mangkuk,artinya wilayah Desa Pa...

 

 

A typical Gasthaus in Austria A Gasthaus (also called Gasthof, Landhaus, or Pension) is a German-style inn or tavern with a bar, a restaurant, banquet facilities and hotel rooms for rent.[1] Gasthäuser are typically found in smaller towns and are often family-owned. It is common for three generations of a family to work together in such an establishment, and many have been owned by the same family for generations.[2] Gasthäuser are common in Germany, Austria, Switzerland, an...

 

 

منتخب إستونيا لكرة القدم للسيدات معلومات عامة بلد الرياضة  إستونيا الفئة كرة القدم للسيدات  رمز الفيفا EST  الاتحاد اتحاد إستونيا لكرة القدم كونفدرالية يويفا (أوروبا) الملعب الرئيسي أ. لي كوك أرينا الموقع الرسمي الموقع الرسمي  الطاقم واللاعبون المدرب كيث بواناس ا...

1996 video game This article is about the video game. For the unrelated film, see The Descent Part 2. 1996 video gameDescent IIDeveloper(s)Parallax SoftwareInterplay Productions (Mac OS)R-Comp Interactive (Risc OS)Publisher(s)Interplay ProductionsMac Play (Mac OS)R-Comp Interactive (Risc OS)Director(s)Mike KulasMatt ToschlogProducer(s)Rusty Buchert[1]Designer(s)Jasen WhitesideMark DinseChe-Yuan WangProgrammer(s)Matt ToschlogMike KulasJohn SlagelJason LeightonChe-Yuan WangArtist(s)Adam...

 

 

HolokausBagian dari Perang Dunia IIYahudi tiba di Auschwitz II di Polandia yang diduduki Jerman, Mei 1944. Banyak dari mereka yang diseleksi untuk dibunuh di kamar gas.LokasiEropa, terutama di Polandia yang diduduki Jerman dan Uni SovietTanggal1941–1945[1]Jenis seranganGenosida, penembakan massal, gas beracunKorban tewasKurang lebih 6 juta YahudiPelakuJerman Nazi bersama sekutunya Holokaus (dari bahasa Yunani ὁλόκαυστος holókaustos: hólos, seluruh dan kaustós, terbakar...

 

 

Voce principale: Empoli Ladies FBC. S.S.D. Empoli Ladies FBCStagione 2017-2018Sport calcio Squadra Empoli Allenatore Alessandro Pistolesi Presidente Valerio Bachi Serie A12º posto, retrocesso Coppa ItaliaTerzo turno Maggiori presenzeCampionato: Bargi, Filangeri (22)Totale: Bargi (26) Miglior marcatoreCampionato: Bargi (4)Totale: Bargi (10) StadioCentro sportivo Monteboro 2016-2017 2018-2019 Si invita a seguire il modello di voce Questa voce raccoglie le informazioni riguardanti la Soci...

イスラームにおける結婚(イスラームにおけるけっこん)とは、二者の間で行われる法的な契約である。新郎新婦は自身の自由な意思で結婚に同意する。口頭または紙面での規則に従った拘束的な契約は、イスラームの結婚で不可欠だと考えられており、新郎と新婦の権利と責任の概要を示している[1]。イスラームにおける離婚は様々な形をとることができ、個�...

 

 

† Человек прямоходящий Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:Синапсиды�...

 

 

Meat cut from a horse Horse meatPaardenrookvlees (Dutch-style smoked and salted horse meat) on breadTypeMeat Horse meat forms a significant part of the culinary traditions of many countries, particularly in Eurasia. The eight countries that consume the most horse meat consume about 4.3 million horses a year. For the majority of humanity's early existence, wild horses were hunted as a source of protein.[1][2] History During the Paleolithic, wild horses formed an important ...

Fictional organization MaggiaThe different Maggia families.Attribution unknown, artist Jack KirbyPublication informationPublisherMarvel ComicsFirst appearanceThe Avengers #13 (February 1965)Created byStan Lee (writer)Don Heck (artist)In-story informationType of organizationOrganized crimeAgent(s)Full list Maggia is a fictional international crime syndicate appearing in American comic books published by Marvel Comics. The organization exists in Marvel's main shared universe, known as Earth-616...

 

 

Sangria WineSingel oleh Pharrell Williams and Camila CabelloBahasaInggrisSpanyolDirilis18 Mei 2018 (2018-05-18)GenrePopDurasi3:22[1]LabelColumbiaPenciptaPharrell WilliamsCamila CabelloBianca LandrauProduserPharrell WilliamsCamila CabelloKronologi singel Pharrell Williams Feels (2017) Sangria Wine (2018) The Mantra (2018) Kronologi singel Camila Cabello Never Be the Same(2018) Sangria Wine(2018) Beautiful(2018) Sangria Wine adalah sebuah lagu karya musisi Amerika Serikat...

 

 

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (يونيو 2023) هاتف أرضي الهاتف الثابت أو الهاتف الأرضي أو الهاتف القار هو طريقة الاتصال السم�...

Swedish writer Daniel PoohlBorn (1981-08-11) August 11, 1981 (age 42)VänersborgAlma materSinclairgymnasiet, UddevallaNotable worksSom om vi hade glömt Daniel Poohl, (born 11 August 1981 in Vänersborg) is a Swedish journalist who served as publisher (ansvarig utgivare) and CEO of the Expo magazine. He started working at Expo at the age of twenty in 2001. Poohl became the editorial assistant after the death of Stieg Larsson in 2004 and became the editor-in-chief in 2006. Poohl grew...

 

 

1869 United States Supreme Court caseTexas v. WhiteSupreme Court of the United StatesArgued February 5, 1869Decided April 12, 1869Full case nameTexas v. White, et al.Citations74 U.S. 700 (more)7 Wall. 700; 19 L. Ed. 227; 1868 U.S. LEXIS 1056; 1868 WL 11083HoldingTexas (and the rest of the Confederacy) never left the Union during the Civil War, because a state cannot unilaterally secede. US Treasury bond sales by Confederate Texas during the war, originally owned by pre-war Texas, were invali...

 

 

Questa voce sugli argomenti reti televisive e Eurovisione è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti dei progetti di riferimento 1, 2. EurovisioneLogo dell'emittenteStato Svizzera Tipogeneralista Targettutti VersioniEurovision (data di lancio: 6 giugno 1954) EditoreUER Sitohttps://www.eurovision.net Modifica dati su Wikidata · Manuale L'Eurovisione (Eurovision) è un organismo internazionale di coordina...

Đối với các định nghĩa khác, xem Bắc Mỹ (định hướng). Đừng nhầm lẫn với Bắc Mỹ (khu vực). Bắc MỹDiện tích24.709.000 km2 (9.540.000 dặm vuông Anh) (hạng 3)Dân số579.024.000 (2016; hạng 4)Mật độ dân số22.9/km² (59.3/sq mi)GDP (PPP)25.0 nghìn tỷ đô la Mỹ (2018; hạng 3)GDP (danh nghĩa)23.5 nghìn tỷ đô la Mỹ (2018; hạng 2)GDP bình quân đầu người47.750 đô la Mỹ ...

 

 

У этого термина существуют и другие значения, см. Шахтёр. День шахтёра Тип профессиональный праздник Дата ежегодно, в последнее воскресенье августа  Медиафайлы на Викискладе 28.08.22 27.08.23 25.08.24 31.08.25 30.08.26 День шахтёра — профессиональный праздник шахтёров, история котор�...

 

 

Branch of Candomblé religion Candomblé BantuCandomblé Bantu practitioners in Bahia, 1940sClassificationAfro-Brazilian religionPriesthoodMãe-de-santo or Pai-de-santo Part of a series onKongo religion Religions Antonianism Kongo Kongo Catholicism Deities Bunzi Chicamassi-chinuinji Dinganga Jesus Kimbazi Kuitikuiti Lubangala Lusiemo Lusunzi Makanga Ma Kiela Mamba Muntu Mbantilanda Mbenza Mboze Mbumba Moni-Mambu Ngonde Ntangu Nzambi Mpungu Nzambici Nzazi Phulu Bunzi Yahweh Elements Ancestral ...

Por favor, melhore este artigo, expandindo-o. Mais informações podem ser encontradas no artigo «Boeing C-40 Clipper» na Wikipédia em inglês e também na página de discussão. (Janeiro de 2016) C-40 Clipper Boeing C-40 ClipperUm C-40B de transporte VIP em Camberra, Austrália, 2005 Descrição Tipo / Missão Aeronave de transporte militar País de origem  Estados Unidos Fabricante Boeing Período de produção 2001-presente Quantidade produzida 21 Custo unitário US$70 milhões Des...

 

 

Canadian ice hockey coach (born 1963) This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Michel Therrien – news · newspapers · books · scholar · JSTOR (April 2018) (Learn how and when to remove thi...