p53, also known as Tumor protein P53, cellular tumor antigen p53 (UniProt name), or transformation-related protein 53 (TRP53) is a regulatory protein that is often mutated in human cancers. The p53 proteins (originally thought to be, and often spoken of as, a single protein) are crucial in vertebrates, where they prevent cancer formation.[5] As such, p53 has been described as "the guardian of the genome" because of its role in conserving stability by preventing genome mutation.[6] Hence TP53[note 1] is classified as a tumor suppressor gene.[7][8][9][10][11]
The TP53 gene is the most frequently mutated gene (>50%) in human cancer, indicating that the TP53 gene plays a crucial role in preventing cancer formation.[5]TP53 gene encodes proteins that bind to DNA and regulate gene expression to prevent mutations of the genome.[12] In addition to the full-length protein, the human TP53 gene encodes at least 12 protein isoforms.[13]
Gene
In humans, the TP53 gene is located on the short arm of chromosome 17 (17p13.1).[7][8][9][10] The gene spans 20 kb, with a non-coding exon 1 and a very long first intron of 10 kb, overlapping the Hp53int1 gene. The coding sequence contains five regions showing a high degree of conservation in vertebrates, predominantly in exons 2, 5, 6, 7 and 8, but the sequences found in invertebrates show only distant resemblance to mammalian TP53.[14]TP53orthologs[15] have been identified in most mammals for which complete genome data are available.
Human TP53 gene
In humans, a common polymorphism involves the substitution of an arginine for a proline at codon position 72 of exon 4. Many studies have investigated a genetic link between this variation and cancer susceptibility; however, the results have been controversial. For instance, a meta-analysis from 2009 failed to show a link for cervical cancer.[16] A 2011 study found that the TP53 proline mutation did have a profound effect on pancreatic cancer risk among males.[17] A study of Arab women found that proline homozygosity at TP53 codon 72 is associated with a decreased risk for breast cancer.[18] One study suggested that TP53 codon 72 polymorphisms, MDM2 SNP309, and A2164G may collectively be associated with non-oropharyngeal cancer susceptibility and that MDM2 SNP309 in combination with TP53 codon 72 may accelerate the development of non-oropharyngeal cancer in women.[19] A 2011 study found that TP53 codon 72 polymorphism was associated with an increased risk of lung cancer.[20]
Meta-analyses from 2011 found no significant associations between TP53 codon 72 polymorphisms and both colorectal cancer risk[21] and endometrial cancer risk.[22] A 2011 study of a Brazilian birth cohort found an association between the non-mutant arginine TP53 and individuals without a family history of cancer.[23] Another 2011 study found that the p53 homozygous (Pro/Pro) genotype was associated with a significantly increased risk for renal cell carcinoma.[24]
Function
DNA damage and repair
p53 plays a role in regulation or progression through the cell cycle, apoptosis, and genomic stability by means of several mechanisms:
It can activate DNA repair proteins when DNA has sustained damage[25] Thus, it may be an important factor in aging.[26]
It can arrest growth by holding the cell cycle at the G1/S regulation point on DNA damage recognition—if it holds the cell here for long enough, the DNA repair proteins will have time to fix the damage and the cell will be allowed to continue the cell cycle.
It can initiate apoptosis (i.e., programmed cell death) if DNA damage proves to be irreparable.
WAF1/CIP1 encodes for p21 and hundreds of other down-stream genes. p21 (WAF1) binds to the G1-S/CDK (CDK4/CDK6, CDK2, and CDK1) complexes (molecules important for the G1/S transition in the cell cycle) inhibiting their activity. [citation needed]
When p21(WAF1) is complexed with CDK2, the cell cannot continue to the next stage of cell division. A mutant p53 will no longer bind DNA in an effective way, and, as a consequence, the p21 protein will not be available to act as the "stop signal" for cell division.[27] Studies of human embryonic stem cells (hESCs) commonly describe the nonfunctional p53-p21 axis of the G1/S checkpoint pathway with subsequent relevance for cell cycle regulation and the DNA damage response (DDR). Importantly, p21 mRNA is clearly present and upregulated after the DDR in hESCs, but p21 protein is not detectable. In this cell type, p53 activates numerous microRNAs (like miR-302a, miR-302b, miR-302c, and miR-302d) that directly inhibit the p21 expression in hESCs. [citation needed]
The p21 protein binds directly to cyclin-CDK complexes that drive forward the cell cycle and inhibits their kinase activity, thereby causing cell cycle arrest to allow repair to take place. p21 can also mediate growth arrest associated with differentiation and a more permanent growth arrest associated with cellular senescence. The p21 gene contains several p53 response elements that mediate direct binding of the p53 protein, resulting in transcriptional activation of the gene encoding the p21 protein. [citation needed]
The p53 and RB1 pathways are linked via p14ARF, raising the possibility that the pathways may regulate each other.[28]
p53 expression can be stimulated by UV light, which also causes DNA damage. In this case, p53 can initiate events leading to tanning.[29][30]
Stem cells
Levels of p53 play an important role in the maintenance of stem cells throughout development and the rest of human life. [citation needed]
In human embryonic stem cells (hESCs)s, p53 is maintained at low inactive levels.[31] This is because activation of p53 leads to rapid differentiation of hESCs.[32] Studies have shown that knocking out p53 delays differentiation and that adding p53 causes spontaneous differentiation, showing how p53 promotes differentiation of hESCs and plays a key role in cell cycle as a differentiation regulator. When p53 becomes stabilized and activated in hESCs, it increases p21 to establish a longer G1. This typically leads to abolition of S-phase entry, which stops the cell cycle in G1, leading to differentiation. Work in mouse embryonic stem cells has recently shown however that the expression of P53 does not necessarily lead to differentiation.[33] p53 also activates miR-34a and miR-145, which then repress the hESCs pluripotency factors, further instigating differentiation.[31]
In adult stem cells, p53 regulation is important for maintenance of stemness in adult stem cell niches. Mechanical signals such as hypoxia affect levels of p53 in these niche cells through the hypoxia inducible factors, HIF-1α and HIF-2α. While HIF-1α stabilizes p53, HIF-2α suppresses it.[34] Suppression of p53 plays important roles in cancer stem cell phenotype, induced pluripotent stem cells and other stem cell roles and behaviors, such as blastema formation. Cells with decreased levels of p53 have been shown to reprogram into stem cells with a much greater efficiency than normal cells.[35][36] Papers suggest that the lack of cell cycle arrest and apoptosis gives more cells the chance to be reprogrammed. Decreased levels of p53 were also shown to be a crucial aspect of blastema formation in the legs of salamanders.[37] p53 regulation is very important in acting as a barrier between stem cells and a differentiated stem cell state, as well as a barrier between stem cells being functional and being cancerous.[38]
Other
Apart from the cellular and molecular effects above, p53 has a tissue-level anticancer effect that works by inhibiting angiogenesis.[39] As tumors grow they need to recruit new blood vessels to supply them, and p53 inhibits that by (i) interfering with regulators of tumor hypoxia that also affect angiogenesis, such as HIF1 and HIF2, (ii) inhibiting the production of angiogenic promoting factors, and (iii) directly increasing the production of angiogenesis inhibitors, such as arresten.[40][41]
The immune response to infection also involves p53 and NF-κB. Checkpoint control of the cell cycle and of apoptosis by p53 is inhibited by some infections such as Mycoplasma bacteria,[43] raising the specter of oncogenic infection.
Regulation
p53 acts as a cellular stress sensor. It is normally kept at low levels by being constantly marked for degradation by the E3 ubiquitin ligase protein MDM2.[44] p53 is activated in response to myriad stressors – including DNA damage (induced by either UV, IR, or chemical agents such as hydrogen peroxide), oxidative stress,[45]osmotic shock, ribonucleotide depletion, viral lung infections[46] and deregulated oncogene expression. This activation is marked by two major events. First, the half-life of the p53 protein is increased drastically, leading to a quick accumulation of p53 in stressed cells. Second, a conformational change forces p53 to be activated as a transcription regulator in these cells. The critical event leading to the activation of p53 is the phosphorylation of its N-terminal domain. The N-terminal transcriptional activation domain contains a large number of phosphorylation sites and can be considered as the primary target for protein kinases transducing stress signals. [citation needed]
The protein kinases that are known to target this transcriptional activation domain of p53 can be roughly divided into two groups. A first group of protein kinases belongs to the MAPK family (JNK1-3, ERK1-2, p38 MAPK), which is known to respond to several types of stress, such as membrane damage, oxidative stress, osmotic shock, heat shock, etc. A second group of protein kinases (ATR, ATM, CHK1 and CHK2, DNA-PK, CAK, TP53RK) is implicated in the genome integrity checkpoint, a molecular cascade that detects and responds to several forms of DNA damage caused by genotoxic stress. Oncogenes also stimulate p53 activation, mediated by the protein p14ARF. [citation needed]
In unstressed cells, p53 levels are kept low through a continuous degradation of p53. A protein called Mdm2 (also called HDM2 in humans), binds to p53, preventing its action and transports it from the nucleus to the cytosol. Mdm2 also acts as an ubiquitin ligase and covalently attaches ubiquitin to p53 and thus marks p53 for degradation by the proteasome. However, ubiquitylation of p53 is reversible. On activation of p53, Mdm2 is also activated, setting up a feedback loop. p53 levels can show oscillations (or repeated pulses) in response to certain stresses, and these pulses can be important in determining whether the cells survive the stress, or die.[47]
MI-63 binds to MDM2, reactivating p53 in situations where p53's function has become inhibited.[48]
A ubiquitin specific protease, USP7 (or HAUSP), can cleave ubiquitin off p53, thereby protecting it from proteasome-dependent degradation via the ubiquitin ligase pathway. This is one means by which p53 is stabilized in response to oncogenic insults. USP42 has also been shown to deubiquitinate p53 and may be required for the ability of p53 to respond to stress.[49]
Recent research has shown that HAUSP is mainly localized in the nucleus, though a fraction of it can be found in the cytoplasm and mitochondria. Overexpression of HAUSP results in p53 stabilization. However, depletion of HAUSP does not result in a decrease in p53 levels but rather increases p53 levels due to the fact that HAUSP binds and deubiquitinates Mdm2. It has been shown that HAUSP is a better binding partner to Mdm2 than p53 in unstressed cells.
USP10, however, has been shown to be located in the cytoplasm in unstressed cells and deubiquitinates cytoplasmic p53, reversing Mdm2 ubiquitination. Following DNA damage, USP10 translocates to the nucleus and contributes to p53 stability. Also USP10 does not interact with Mdm2.[50]
Phosphorylation of the N-terminal end of p53 by the above-mentioned protein kinases disrupts Mdm2-binding. Other proteins, such as Pin1, are then recruited to p53 and induce a conformational change in p53, which prevents Mdm2-binding even more. Phosphorylation also allows for binding of transcriptional coactivators, like p300 and PCAF, which then acetylate the C-terminal end of p53, exposing the DNA binding domain of p53, allowing it to activate or repress specific genes. Deacetylase enzymes, such as Sirt1 and Sirt7, can deacetylate p53, leading to an inhibition of apoptosis.[51] Some oncogenes can also stimulate the transcription of proteins that bind to MDM2 and inhibit its activity. [citation needed]
Epigenetic marks like histone methylation can also regulate p53, for example, p53 interacts directly with a repressive Trim24 cofactor that binds histones in regions of the genome that are epigenetically repressed.[52] Trim24 prevents p53 from activating its targets, but only in these regions, effectively giving p53 the ability to 'read out' the histone profile at key target genes and act in a gene-specific manner. [citation needed]
Role in disease
If the TP53 gene is damaged, tumor suppression is severely compromised. People who inherit only one functional copy of the TP53 gene will most likely develop tumors in early adulthood, a disorder known as Li–Fraumeni syndrome. [citation needed]
The TP53 gene can also be modified by mutagens (chemicals, radiation, or viruses), increasing the likelihood for uncontrolled cell division. More than 50 percent of human tumors contain a mutation or deletion of the TP53 gene.[53] Loss of p53 creates genomic instability that most often results in an aneuploidy phenotype.[54]
Increasing the amount of p53 may seem a solution for treatment of tumors or prevention of their spreading. This, however, is not a usable method of treatment, since it can cause premature aging.[55] Restoring endogenous normal p53 function holds some promise. Research has shown that this restoration can lead to regression of certain cancer cells without damaging other cells in the process. The ways by which tumor regression occurs depends mainly on the tumor type. For example, restoration of endogenous p53 function in lymphomas may induce apoptosis, while cell growth may be reduced to normal levels. Thus, pharmacological reactivation of p53 presents itself as a viable cancer treatment option.[56][57] The first commercial gene therapy, Gendicine, was approved in China in 2003 for the treatment of head and neck squamous cell carcinoma. It delivers a functional copy of the p53 gene using an engineered adenovirus.[58]
Certain pathogens can also affect the p53 protein that the TP53 gene expresses. One such example, human papillomavirus (HPV), encodes a protein, E6, which binds to the p53 protein and inactivates it. This mechanism, in synergy with the inactivation of the cell cycle regulator pRb by the HPV protein E7, allows for repeated cell division manifested clinically as warts. Certain HPV types, in particular types 16 and 18, can also lead to progression from a benign wart to low or high-grade cervical dysplasia, which are reversible forms of precancerous lesions. Persistent infection of the cervix over the years can cause irreversible changes leading to carcinoma in situ and eventually invasive cervical cancer. This results from the effects of HPV genes, particularly those encoding E6 and E7, which are the two viral oncoproteins that are preferentially retained and expressed in cervical cancers by integration of the viral DNA into the host genome.[59]
The p53 protein is continually produced and degraded in cells of healthy people, resulting in damped oscillation (see a stochastic model of this process in [60]). The degradation of the p53 protein is associated with binding of MDM2. In a negative feedback loop, MDM2 itself is induced by the p53 protein. Mutant p53 proteins often fail to induce MDM2, causing p53 to accumulate at very high levels. Moreover, the mutant p53 protein itself can inhibit normal p53 protein levels. In some cases, single missense mutations in p53 have been shown to disrupt p53 stability and function.[61]
This image shows different patterns of p53 expression in endometrial cancers on chromogenic immunohistochemistry, whereof all except wild-type are variably termed abnormal/aberrant/mutation-type and are strongly predictive of an underlying TP53 mutation:[62]
Wild-type, upper left: Endometrial endometrioid carcinoma showing normal wild-type pattern of p53 expression with variable proportion of tumor cell nuclei staining with variable intensity. Note, this wild-type pattern should not be reported as "positive," because this is ambiguous reporting language.
Overexpression, upper right: Endometrial endometrioid carcinoma, grade 3, with overexpression, showing strong staining in virtually all tumor cell nuclei, much stronger compared with the internal control of fibroblasts in the center. Note, there is some cytoplasmic background indicating that this staining is quite strong but this should not be interpreted as abnormal cytoplasmic pattern.
Complete absence, lower left: Endometrial serous carcinoma showing complete absence of p53 expression with internal control showing moderate to strong but variable staining. Note, wild-type pattern in normal atrophic glands at 12 and 6 o'clock.
Both cytoplasmic and nuclear, lower right: Endometrial endometrioid carcinoma showing cytoplasmic p53 expression with internal control (stroma and normal endometrial glands) showing nuclear wild-type pattern. The cytoplasmic pattern is accompanied by nuclear staining of similar intensity.
Suppression of p53 in human breast cancer cells is shown to lead to increased CXCR5 chemokine receptor gene expression and activated cell migration in response to chemokineCXCL13.[65]
One study found that p53 and Myc proteins were key to the survival of Chronic Myeloid Leukaemia (CML) cells. Targeting p53 and Myc proteins with drugs gave positive results on mice with CML.[66][67]
Experimental analysis of p53 mutations
Most p53 mutations are detected by DNA sequencing. However, it is known that single missense mutations can have a large spectrum from rather mild to very severe functional effects.[61]
The large spectrum of cancer phenotypes due to mutations in the TP53 gene is also supported by the fact that different isoforms of p53 proteins have different cellular mechanisms for prevention against cancer. Mutations in TP53 can give rise to different isoforms, preventing their overall functionality in different cellular mechanisms and thereby extending the cancer phenotype from mild to severe. Recent studies show that p53 isoforms are differentially expressed in different human tissues, and the loss-of-function or gain-of-function mutations within the isoforms can cause tissue-specific cancer or provide cancer stem cellpotential in different tissues.[11][69][70][71] TP53 mutation also hits energy metabolism and increases glycolysis in breast cancer cells.[72]
The dynamics of p53 proteins, along with its antagonist Mdm2, indicate that the levels of p53, in units of concentration, oscillate as a function of time. This "damped" oscillation is both clinically documented [73] and mathematically modelled.[74][75] Mathematical models also indicate that the p53 concentration oscillates much faster once teratogens, such as double-stranded breaks (DSB) or UV radiation, are introduced to the system. This supports and models the current understanding of p53 dynamics, where DNA damage induces p53 activation (see p53 regulation for more information). Current models can also be useful for modelling the mutations in p53 isoforms and their effects on p53 oscillation, thereby promoting de novo tissue-specific pharmacological drug discovery. [citation needed]
Warren Maltzman, of the Waksman Institute of Rutgers University first demonstrated that TP53 was responsive to DNA damage in the form of ultraviolet radiation.[83] In a series of publications in 1991–92, Michael Kastan of Johns Hopkins University, reported that TP53 was a critical part of a signal transduction pathway that helped cells respond to DNA damage.[84]
In 1993, p53 was voted molecule of the year by Science magazine.[85]
an acidic N-terminus transcription-activation domain (TAD), also known as activation domain 1 (AD1), which activates transcription factors. The N-terminus contains two complementary transcriptional activation domains, with a major one at residues 1–42 and a minor one at residues 55–75, specifically involved in the regulation of several pro-apoptotic genes.[86]
activation domain 2 (AD2) important for apoptotic activity: residues 43–63.
proline rich domain important for the apoptotic activity of p53 by nuclear exportation via MAPK: residues 64–92.
central DNA-binding core domain (DBD). Contains one zinc atom and several arginine amino acids: residues 102–292. This region is responsible for binding the p53 co-repressor LMO3.[87]
homo-oligomerisation domain (OD): residues 307–355. Tetramerization is essential for the activity of p53 in vivo.
C-terminal involved in downregulation of DNA binding of the central domain: residues 356–393.[88]
Mutations that deactivate p53 in cancer usually occur in the DBD. Most of these mutations destroy the ability of the protein to bind to its target DNA sequences, and thus prevents transcriptional activation of these genes. As such, mutations in the DBD are recessiveloss-of-function mutations. Molecules of p53 with mutations in the OD dimerise with wild-type p53, and prevent them from activating transcription. Therefore, OD mutations have a dominant negative effect on the function of p53.
SDS-PAGE analysis indicates that p53 is a 53-kilodalton (kDa) protein. However, the actual mass of the full-length p53 protein (p53α) based on the sum of masses of the amino acid residues is only 43.7 kDa. This difference is due to the high number of proline residues in the protein, which slow its migration on SDS-PAGE, thus making it appear heavier than it actually is.[90]
Isoforms
As with 95% of human genes, TP53 encodes more than one protein. All these p53 proteins are called the p53 isoforms.[5] These proteins range in size from 3.5 to 43.7 kDa. Several isoforms were discovered in 2005, and so far 12 human p53 isoforms have been identified (p53α, p53β, p53γ, ∆40p53α, ∆40p53β, ∆40p53γ, ∆133p53α, ∆133p53β, ∆133p53γ, ∆160p53α, ∆160p53β, ∆160p53γ). Furthermore, p53 isoforms are expressed in a tissue dependent manner and p53α is never expressed alone.[11]
The full length p53 isoform proteins can be subdivided into different protein domains. Starting from the N-terminus, there are first the amino-terminal transcription-activation domains (TAD 1, TAD 2), which are needed to induce a subset of p53 target genes. This domain is followed by the proline rich domain (PXXP), whereby the motif PXXP is repeated (P is a proline and X can be any amino acid). It is required among others for p53 mediated apoptosis.[91] Some isoforms lack the proline rich domain, such as Δ133p53β,γ and Δ160p53α,β,γ; hence some isoforms of p53 are not mediating apoptosis, emphasizing the diversifying roles of the TP53 gene.[69] Afterwards there is the DNA binding domain (DBD), which enables the proteins to sequence specific binding. The C-terminus domain completes the protein. It includes the nuclear localization signal (NLS), the nuclear export signal (NES) and the oligomerisation domain (OD). The NLS and NES are responsible for the subcellular regulation of p53. Through the OD, p53 can form a tetramer and then bind to DNA. Among the isoforms, some domains can be missing, but all of them share most of the highly conserved DNA-binding domain. [citation needed]
The isoforms are formed by different mechanisms. The beta and the gamma isoforms are generated by multiple splicing of intron 9, which leads to a different C-terminus. Furthermore, the usage of an internal promoter in intron 4 causes the ∆133 and ∆160 isoforms, which lack the TAD domain and a part of the DBD. Moreover, alternative initiation of translation at codon 40 or 160 bear the ∆40p53 and ∆160p53 isoforms.[11]
Due to the isoformic nature of p53 proteins, there have been several sources of evidence showing that mutations within the TP53 gene giving rise to mutated isoforms are causative agents of various cancer phenotypes, from mild to severe, due to single mutation in the TP53 gene (refer to section Experimental analysis of p53 mutations for more details).
^Levine AJ, Lane DP, eds. (2010). The p53 family. Cold Spring Harbor Perspectives in Biology. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press. ISBN978-0-87969-830-0.
^Klug SJ, Ressing M, Koenig J, et al. (August 2009). "TP53 codon 72 polymorphism and cervical cancer: a pooled analysis of individual data from 49 studies". The Lancet. Oncology. 10 (8): 772–84. doi:10.1016/S1470-2045(09)70187-1. PMID19625214.
^Piao JM, Kim HN, Song HR, et al. (September 2011). "p53 codon 72 polymorphism and the risk of lung cancer in a Korean population". Lung Cancer. 73 (3): 264–7. doi:10.1016/j.lungcan.2010.12.017. PMID21316118.
^Wang JJ, Zheng Y, Sun L, et al. (November 2011). "TP53 codon 72 polymorphism and colorectal cancer susceptibility: a meta-analysis". Molecular Biology Reports. 38 (8): 4847–53. doi:10.1007/s11033-010-0619-8. PMID21140221. S2CID11730631.
^Jiang DK, Yao L, Ren WH, et al. (December 2011). "TP53 Arg72Pro polymorphism and endometrial cancer risk: a meta-analysis". Medical Oncology. 28 (4): 1129–35. doi:10.1007/s12032-010-9597-x. PMID20552298. S2CID32990396.
^Thurow HS, Haack R, Hartwig FP, et al. (December 2011). "TP53 gene polymorphism: importance to cancer, ethnicity and birth weight in a Brazilian cohort". Journal of Biosciences. 36 (5): 823–31. doi:10.1007/s12038-011-9147-5. PMID22116280. S2CID23027087.
^Huang CY, Su CT, Chu JS, et al. (December 2011). "The polymorphisms of P53 codon 72 and MDM2 SNP309 and renal cell carcinoma risk in a low arsenic exposure area". Toxicology and Applied Pharmacology. 257 (3): 349–55. Bibcode:2011ToxAP.257..349H. doi:10.1016/j.taap.2011.09.018. PMID21982800.
^Gilbert SF. Developmental Biology, 10th ed. Sunderland, MA USA: Sinauer Associates, Inc. Publishers. p. 588.
^National Center for Biotechnology Information (1998). "Skin and Connective Tissue". Genes and Disease. United States National Institutes of Health. Retrieved 2008-05-28.
^ abBabaei G, Aliarab A, Asghari Vostakolaei M, et al. (November 2021). "Crosslink between p53 and metastasis: focus on epithelial-mesenchymal transition, cancer stem cell, angiogenesis, autophagy, and anoikis". Molecular Biology Reports. 48 (11): 7545–7557. doi:10.1007/s11033-021-06706-1. PMID34519942. S2CID237506513.
^Teodoro JG, Evans SK, Green MR (November 2007). "Inhibition of tumor angiogenesis by p53: a new role for the guardian of the genome". Journal of Molecular Medicine (Review). 85 (11): 1175–1186. doi:10.1007/s00109-007-0221-2. PMID17589818. S2CID10094554.
^Borchsenius SN, Daks A, Fedorova O, et al. (January 2018). "Effects of mycoplasma infection on the host organism response via p53/NF-κB signaling". Journal of Cellular Physiology. 234 (1): 171–180. doi:10.1002/jcp.26781. PMID30146800.
^Bykov VJ, Eriksson SE, Bianchi J, et al. (February 2018). "Targeting mutant p53 for efficient cancer therapy". Nature Reviews. Cancer. 18 (2): 89–102. doi:10.1038/nrc.2017.109. PMID29242642. S2CID4552678.
^Ventura A, Kirsch DG, McLaughlin ME, et al. (February 2007). "Restoration of p53 function leads to tumour regression in vivo". Nature. 445 (7128): 661–5. doi:10.1038/nature05541. PMID17251932. S2CID4373520.
^Chong KH, Samarasinghe S, Kulasiri D (December 2013). "Mathematical modelling of p53 basal dynamics and DNA damage response". C-fACS. 259 (20th International Congress on Mathematical Modelling and Simulation): 670–6. doi:10.1016/j.mbs.2014.10.010. PMID25433195.
^Chumakov PM, Iotsova VS, Georgiev GP (1982). "[Isolation of a plasmid clone containing the mRNA sequence for mouse nonviral T-antigen]". Doklady Akademii Nauk SSSR (in Russian). 267 (5): 1272–5. PMID6295732.
^ abLarsen S, Yokochi T, Isogai E, et al. (February 2010). "LMO3 interacts with p53 and inhibits its transcriptional activity". Biochemical and Biophysical Research Communications. 392 (3): 252–7. doi:10.1016/j.bbrc.2009.12.010. PMID19995558.
^Bell S, Klein C, Müller L, et al. (October 2002). "p53 contains large unstructured regions in its native state". Journal of Molecular Biology. 322 (5): 917–27. doi:10.1016/S0022-2836(02)00848-3. PMID12367518.
^ abKojic S, Medeot E, Guccione E, et al. (May 2004). "The Ankrd2 protein, a link between the sarcomere and the nucleus in skeletal muscle". Journal of Molecular Biology. 339 (2): 313–25. doi:10.1016/j.jmb.2004.03.071. PMID15136035.
^Khanna KK, Keating KE, Kozlov S, et al. (December 1998). "ATM associates with and phosphorylates p53: mapping the region of interaction". Nature Genetics. 20 (4): 398–400. doi:10.1038/3882. PMID9843217. S2CID23994762.
^Westphal CH, Schmaltz C, Rowan S, et al. (May 1997). "Genetic interactions between atm and p53 influence cellular proliferation and irradiation-induced cell cycle checkpoints". Cancer Research. 57 (9): 1664–7. PMID9135004.
^Leu JI, Dumont P, Hafey M, et al. (May 2004). "Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex". Nature Cell Biology. 6 (5): 443–50. doi:10.1038/ncb1123. PMID15077116. S2CID43063712.
^Garkavtsev IV, Kley N, Grigorian IA, et al. (December 2001). "The Bloom syndrome protein interacts and cooperates with p53 in regulation of transcription and cell growth control". Oncogene. 20 (57): 8276–80. doi:10.1038/sj.onc.1205120. PMID11781842. S2CID13084911.
^Abramovitch S, Werner H (2003). "Functional and physical interactions between BRCA1 and p53 in transcriptional regulation of the IGF-IR gene". Hormone and Metabolic Research. 35 (11–12): 758–62. doi:10.1055/s-2004-814154. PMID14710355. S2CID20898175.
^Chai YL, Cui J, Shao N, et al. (January 1999). "The second BRCT domain of BRCA1 proteins interacts with p53 and stimulates transcription from the p21WAF1/CIP1 promoter". Oncogene. 18 (1): 263–8. doi:10.1038/sj.onc.1202323. PMID9926942. S2CID7462625.
^Zhang H, Somasundaram K, Peng Y, et al. (April 1998). "BRCA1 physically associates with p53 and stimulates its transcriptional activity". Oncogene. 16 (13): 1713–21. doi:10.1038/sj.onc.1201932. PMID9582019. S2CID24616900.
^Luciani MG, Hutchins JR, Zheleva D, et al. (July 2000). "The C-terminal regulatory domain of p53 contains a functional docking site for cyclin A". Journal of Molecular Biology. 300 (3): 503–18. doi:10.1006/jmbi.2000.3830. PMID10884347.
^Ababneh M, Götz C, Montenarh M (May 2001). "Downregulation of the cdc2/cyclin B protein kinase activity by binding of p53 to p34(cdc2)". Biochemical and Biophysical Research Communications. 283 (2): 507–12. doi:10.1006/bbrc.2001.4792. PMID11327730.
^Cuddihy AR, Wong AH, Tam NW, et al. (April 1999). "The double-stranded RNA activated protein kinase PKR physically associates with the tumor suppressor p53 protein and phosphorylates human p53 on serine 392 in vitro". Oncogene. 18 (17): 2690–702. doi:10.1038/sj.onc.1202620. PMID10348343. S2CID22467088.
^Hofmann TG, Möller A, Sirma H, et al. (January 2002). "Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2". Nature Cell Biology. 4 (1): 1–10. doi:10.1038/ncb715. PMID11740489. S2CID37789883.
^Wadhwa R, Yaguchi T, Hasan MK, et al. (April 2002). "Hsp70 family member, mot-2/mthsp70/GRP75, binds to the cytoplasmic sequestration domain of the p53 protein". Experimental Cell Research. 274 (2): 246–53. doi:10.1006/excr.2002.5468. PMID11900485.
^Leung KM, Po LS, Tsang FC, et al. (September 2002). "The candidate tumor suppressor ING1b can stabilize p53 by disrupting the regulation of p53 by MDM2". Cancer Research. 62 (17): 4890–3. PMID12208736.
^ abShiseki M, Nagashima M, Pedeux RM, et al. (May 2003). "p29ING4 and p28ING5 bind to p53 and p300, and enhance p53 activity". Cancer Research. 63 (10): 2373–8. PMID12750254.
^Tsai KW, Tseng HC, Lin WC (October 2008). "Two wobble-splicing events affect ING4 protein subnuclear localization and degradation". Experimental Cell Research. 314 (17): 3130–41. doi:10.1016/j.yexcr.2008.08.002. PMID18775696.
^Frade R, Balbo M, Barel M (December 2000). "RB18A, whose gene is localized on chromosome 17q12-q21.1, regulates in vivo p53 transactivating activity". Cancer Research. 60 (23): 6585–9. PMID11118038.
^Guo A, Salomoni P, Luo J, et al. (October 2000). "The function of PML in p53-dependent apoptosis". Nature Cell Biology. 2 (10): 730–6. doi:10.1038/35036365. PMID11025664. S2CID13480833.
^Bernal JA, Luna R, Espina A, et al. (October 2002). "Human securin interacts with p53 and modulates p53-mediated transcriptional activity and apoptosis". Nature Genetics. 32 (2): 306–11. doi:10.1038/ng997. PMID12355087. S2CID1770399.
^Romanova LY, Willers H, Blagosklonny MV, et al. (December 2004). "The interaction of p53 with replication protein A mediates suppression of homologous recombination". Oncogene. 23 (56): 9025–33. doi:10.1038/sj.onc.1207982. PMID15489903. S2CID23482723.
^Riva F, Zuco V, Vink AA, et al. (December 2001). "UV-induced DNA incision and proliferating cell nuclear antigen recruitment to repair sites occur independently of p53-replication protein A interaction in p53 wild type and mutant ovarian carcinoma cells". Carcinogenesis. 22 (12): 1971–8. doi:10.1093/carcin/22.12.1971. PMID11751427.
^ abCowell IG, Okorokov AL, Cutts SA, et al. (February 2000). "Human topoisomerase IIalpha and IIbeta interact with the C-terminal region of p53". Experimental Cell Research. 255 (1): 86–94. doi:10.1006/excr.1999.4772. PMID10666337.
^Derbyshire DJ, Basu BP, Date T, et al. (October 2002). "Purification, crystallization and preliminary X-ray analysis of the BRCT domains of human 53BP1 bound to the p53 tumour suppressor". Acta Crystallographica D. 58 (Pt 10 Pt 2): 1826–9. Bibcode:2002AcCrD..58.1826D. doi:10.1107/S0907444902010910. PMID12351827.
^Sehat B, Andersson S, Girnita L, et al. (July 2008). "Identification of c-Cbl as a new ligase for insulin-like growth factor-I receptor with distinct roles from Mdm2 in receptor ubiquitination and endocytosis". Cancer Research. 68 (14): 5669–77. doi:10.1158/0008-5472.CAN-07-6364. PMID18632619.
^Okamoto T, Izumi H, Imamura T, et al. (December 2000). "Direct interaction of p53 with the Y-box binding protein, YB-1: a mechanism for regulation of human gene expression". Oncogene. 19 (54): 6194–202. doi:10.1038/sj.onc.1204029. PMID11175333. S2CID19222684.
^Waterman MJ, Stavridi ES, Waterman JL, et al. (June 1998). "ATM-dependent activation of p53 involves dephosphorylation and association with 14-3-3 proteins". Nature Genetics. 19 (2): 175–8. doi:10.1038/542. PMID9620776. S2CID26600934.
^Liu J, Grogan L, Nau MM, et al. (April 2001). "Physical interaction between p53 and primary response gene Egr-1". International Journal of Oncology. 18 (4): 863–70. doi:10.3892/ijo.18.4.863. PMID11251186.
"p53 Knowledgebase". Lane Group at the Institute of Molecular and Cell Biology (IMCB), Singapore. Archived from the original on 2006-01-03. Retrieved 2008-04-06.
Historic house in Minnesota, United States United States historic placeLorin Cray HouseU.S. National Register of Historic Places Show map of MinnesotaShow map of the United StatesLocation603 S. 2nd Street,Mankato, MinnesotaCoordinates44°9′43″N 94°0′20″W / 44.16194°N 94.00556°W / 44.16194; -94.00556Arealess than one acreBuilt1897ArchitectThayer, FrankArchitectural styleClassical Revival, Queen Anne, RomanesqueMPSBlue Earth County MRANRHP reference&...
Bandalungwa, Kinshasa. Bandalungwa merupakan sebuah wilayah di Kinshasa, ibu kota Republik Demokratik Kongo. Bagian utaranya diduduki oleh barak militer Kokolo, di mana bangunannya memiliki gaya arsitektur Flemish. Barak ini terpisah dari wilayah pemukiman seperti the Block di Kasavubu Avenue. Demografi Riwayat populasi Bandalungwa Tahun 19671970198420032004 Populasi 452206024397214195680202341 Wikimedia Commons memiliki media mengenai Category:Bandalungwa (Kinshasa). lbsKomune di provinsi-ko...
Un cubo perfetto è un qualsiasi numero naturale la cui radice cubica corrisponde ad un numero intero. y=x³, per valori interi 1≤x≤25. In aritmetica e algebra, il cubo di un numero n è la sua terza potenza, cioè il risultato della moltiplicazione del numero per sé stesso tre volte: n3 = n × n × n. Si tratta anche della formula per calcolare il volume di un cubo il cui lato ha una lunghezza pari a n. Da qui il nome. La funzione inversa di trovare il numero il cui cubo è n è...
Facultad de Arquitectura, Urbanismo y Artes Forma parte de Universidad Nacional de IngenieríaFundación 30 de abril de 1910 (114 años)LocalizaciónDirección Avenida Túpac Amaru 210, RímacLima, Perú PerúCoordenadas 12°01′18″S 77°03′00″O / -12.021666666667, -77.05AdministraciónDecano Rosario Pacheco AceroAfiliaciones Royal Institute of British ArchitectsAdministrativos 30[4]Academia (2019)Docentes 142[1]Estudiantes 939 • Pregrado ...
2015 song by Ann Sophie Black SmokeSingle by Ann Sophiefrom the album Silver Into Gold Released2 March 2015Recorded2014Length3:12Label Polydor Island Songwriter(s) Michael Harwood Ella McMahon Tonino Speciale Producer(s) Mathias Ramson Johannes Schmalenbach Brix Ann Sophie singles chronology Jump the Gun (2015) Black Smoke (2015) Tornado (2019) Eurovision Song Contest 2015 entryCountryGermanyArtist(s)Ann SophieLanguageEnglishComposer(s) Michael Harwood Ella McMahon Tonino Speciale Lyricist(s)...
This is a list of bridges, ferries, and other crossings of the Gulf of St. Lawrence, Saint Lawrence River, and Great Lakes, by order of south shore terminal running from the Gulf of Saint Lawrence upstream to Lake Superior. Key: Communities linked by individual crossings (N) or (E): North- or East-shore terminal (mainland) (I): Island served by the crossing (S) or (W): South- or West-shore terminal (mainland) Crossings Quebec Lower and Middle Saint Lawrenc...
Mode of human development Sustainable development is an approach to growth and human development that aims to meet the needs of the present without compromising the ability of future generations to meet their own needs.[1][2] The aim is to have a society where living conditions and resources meet human needs without undermining planetary integrity.[3][4] Sustainable development aims to balance the needs of the economy, environment, and social well-being. The Br...
Polish sociocultural movement (c. 1820 - 1864) Part of a series on theCulture of Poland History Middle Ages Renaissance Baroque Enlightenment Romanticism Positivism Young Poland Interbellum World War II Polish People's Republic Modern-day People Poles Ethnic minorities Refugees Crime Education Health care Languages Languages Polish Yiddish German Lithuanian Ruthenian Romani (Baltic Romani North Central Romani Sinte Romani Vlax Romani) Silesian Kashubian Vilamovian Traditions Mythology Cuisine...
Robert HookeRobert Hooke, reconstruction à partir des descriptions de ses collègues Aubrey et Waller.FonctionProfesseurà partir de 1665BiographieNaissance 18 juillet 1635Freshwater (royaume d'Angleterre)Décès 3 mars 1703 (à 67 ans)Londres (royaume d'Angleterre)Sépulture Église St Helen's BishopsgateFormation Christ ChurchWadham CollegeWestminster SchoolUniversité d'OxfordActivités Architecte, philosophe, inventeur, biologiste, professeur d'université, physicien, diariste, astr...
County in Heilongjiang, People's Republic of ChinaBaiquan County 拜泉县CountyBaiquanLocation in HeilongjiangCoordinates: 47°35′N 126°01′E / 47.583°N 126.017°E / 47.583; 126.017CountryPeople's Republic of ChinaProvinceHeilongjiangPrefecture-level cityQiqiharTownship-level divisions7 towns9 townshipsCounty seatBaiquan Town (拜泉镇)Area • Total3,569 km2 (1,378 sq mi)Elevation233 m (764 ft)Population • Total570...
This article may require cleanup to meet Wikipedia's quality standards. The specific problem is: Infobox is too cluttered. Splitting into several smaller infoboxes may be ideal. Please help improve this article if you can. (January 2023) (Learn how and when to remove this message)Japanese train type 225 seriesThe first 225-0 series unit delivered, January 2019ManufacturerKawasaki Heavy Industries, Kinki SharyoReplaced103 series, 113 series, 117 series, 205 series, 221 seriesConstructed2010–...
Prima Categoria 1963-1964 Competizione Prima Categoria Sport Calcio Edizione 5ª Organizzatore L.N.D.Comitati Regionali Luogo Italia Formula 26 gironi all'italiana Cronologia della competizione 1962-1963 1964-1965 Manuale Il campionato di Prima Categoria 1963-1964 è stato il quinto livello del campionato italiano di calcio. A carattere regionale, fu il quinto campionato dilettantistico con questo nome dopo la riforma voluta da Zauli del 1958. Campionati Prima Categoria Abruzzo 1963-19...
Fairchild C-123 Provider Un Fairchild C-123 Provider utilisé en 1971 par la 7th Coast Guard Dist. basée à Miami. Constructeur Chase Aircraft (en) et Fairchild Rôle Avion de transport militaire, utilisé pour épandage aérien militaire Statut Retiré du service Premier vol 14 octobre 1949 Équipage 4 membres Motorisation Moteur Pratt & Whitney R-2800 Double Wasp Nombre 2 Type Moteur en étoile de 18 cylindres, refroidi par air Puissance unitaire 2 300 ch Dimension...
Portuguese League (1st tier) Campeonato da Liga (1934–1938)Primeira Divisão (1938–1999)Primeira Liga (1999–present) Country Portugal Founded 1934 Number of teams 18 (since 2014–15 season) Current champions Sporting CP (2023–24) Most successful club Benfica (38 titles) The Portuguese football champions are the winners of the highest league in Portuguese men's football, the Primeira Liga. History Before the creation of the Primeira Liga, there was a competition called Championship o...
UCI World Tour 2012 Competizione UCI World Tour Sport Ciclismo su strada Edizione 2ª Organizzatore UCI Date 17 gennaio-21 ottobre Risultati Vincitore Joaquim Rodríguez Secondo Bradley Wiggins Terzo Tom Boonen Statistiche Gare 29 Cronologia della competizione UCI World Tour 2011 UCI World Tour 2013 Manuale L'UCI World Tour 2012 è la seconda edizione del circuito organizzato dall'UCI, che sostituisce il vecchio calendario mondiale. Indice 1 Squadre 1.1 Wild Card 2 Calendario 3 Classifiche 4...
Tasmanian state electoral division This article is about the state electorate. For the federal electorate, see Division of Franklin. For the cadastral division, see Franklin Land District. Australian electorate FranklinTasmania—House of AssemblyMap showing the Division of Franklin, as of the 2018 Tasmanian state election.StateTasmaniaCreated1909MPEric Abetz (Liberal)Meg Brown (Labor)David O'Byrne (Independent)Jacquie Petrusma (Liberal)Nic Street (Liberal)Rosalie Woodruff (Greens)Dean Winter...
Place in Kara Region, TogoKabikouKabikouLocation in TogoCoordinates: 9°25′N 0°50′E / 9.417°N 0.833°E / 9.417; 0.833Country TogoRegionKara RegionPrefectureBassarTime zoneUTC + 0 Kabikou is a village in the Bassar Prefecture in the Kara Region of north-western Togo.[1] References ^ Maplandia world gazetteer External links Satellite map at Maplandia.com vte Bassar Prefecture of the Kara RegionCapital: Bassar Afoou Akalede Aketa Akomomboua Alidounpo Apoeydo...