中山大学
|
Read other articles:
Ini adalah nama Korea; marganya adalah Go. JunggigoJunggigo pada tahun November 2014.Nama asal고정기LahirGo Jung-gi5 September 1980 (umur 43)Seoul, South KoreaPekerjaanSingerKarier musikGenreK-popR&BInstrumenVokalTahun aktif2002–sekarangLabelStarship EntertainmentArtis terkaitStarship PlanetSitus webSitus web resmi Nama KoreaHangul고정기 Alih AksaraGo Jeong-giMcCune–ReischauerKo Chŏnggi Go Jung-gi (lahir 5 September 1980), lebih dikenal dengan nama panggungnya Junggig...
Bicyclists crossing the Martin Olav Sabo Bridge in Minneapolis Cycling in Minnesota is a popular form of recreation, commuting, and competitive sport that has grown in prominence over the years. It has been a popular activity in the state since the late 19th century. Minnesota offers an expansive network of cycling routes and bike-friendly amenities. The state has developed a variety of cycling paths, including urban routes, long-distance trails, and mountain biking terrains. Cycling in Minne...
أدريان لامو (بالإنجليزية: Adriàn Lamo) معلومات شخصية الميلاد 20 فبراير 1981[1] بوسطن الوفاة 14 مارس 2018 (37 سنة) [2][3][1] ويتشيتا مكان الدفن ويتشيتا مواطنة الولايات المتحدة مشكلة صحية متلازمة أسبرجر[4] الزوجة لورن فيشر [لغات أخرى]...
American jam band Trance fusion redirects here. For the album by Frank Zappa, see Trance-Fusion. For other uses, see Disco biscuits (disambiguation). The Disco BiscuitsThe Disco Biscuits performing at Red Rocks Amphitheatre 2010Background informationOriginPhiladelphia, Pennsylvania, U.S.GenresLivetronicapsytrancejam bandYears active1995–presentLabelsIndependent Label Group/Diamond RiggsMembersJon GutwilligMarc BrownsteinAllen AucoinAron MagnerPast membersSam AltmanWebsitediscobiscuits.com ...
Тонкоклювый виреон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:�...
Disambiguazione – Se stai cercando altri significati, vedi Tibet (disambigua). Questa voce o sezione sull'argomento Tibet non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Tibet(BO) བོད་ Lhasa, capitale storica del Tibet Stati Cina Bhutan India Territorio Regione Autonoma del Tibet Sichuan Qinghai Bhutan Himachal Pradesh Capol...
Mark Viduka Informasi pribadiNama lengkap Mark Anthony VidukaTanggal lahir 9 Oktober 1975 (umur 48)Tempat lahir Melbourne, AustraliaTinggi 1,88 m (6 ft 2 in)Posisi bermain PenyerangInformasi klubKlub saat ini Free AgentKarier senior*Tahun Tim Tampil (Gol)1993–1995 Melbourne Knights 48 (40)1995–1998 Croatia Zagreb 84 (40)1998–2000 Celtic 37 (30)2000–2004 Leeds United 130 (59)2004–2007 Middlesbrough 72 (26)2007–2009 Newcastle United 38 (7)Total 409 (202)Tim nasi...
Halo, IreneLouie. Selamat datang di Wikipedia bahasa Indonesia! Memulai Memulai Para pengguna baru dapat melihat halaman Pengantar Wikipedia terlebih dahulu. Anda bisa mengucapkan selamat datang kepada Wikipediawan lainnya di Halaman perkenalan. Bingung mulai menjelajah dari mana? Kunjungi Halaman sembarang. Untuk mencoba-coba menyunting, silakan gunakan bak pasir. Baca juga aturan yang disederhanakan sebelum melanjutkan. Ini adalah hal-hal mendasar yang perlu diketahui oleh semua penyunting...
List of events ← 1803 1802 1801 1804 in the United States → 1805 1806 1807 Decades: 1780s 1790s 1800s 1810s 1820s See also: History of the United States (1789–1849) Timeline of United States history (1790–1819) List of years in the United States 1804 in the United States1804 in U.S. states States Connecticut Delaware Georgia Kentucky Maryland Massachusetts New Hampshire New Jersey New York North Carolina Ohio Pennsylvania Rhode Island South Carolina Tennessee Vermont Virginia ...
この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「�...
هنودمعلومات عامةنسبة التسمية الهند التعداد الكليالتعداد قرابة 1.21 مليار[1][2]تعداد الهند عام 2011ق. 1.32 مليار[3]تقديرات عام 2017ق. 30.8 مليون[4]مناطق الوجود المميزةبلد الأصل الهند البلد الهند الهند نيبال 4,000,000[5] الولايات المتحدة 3,982,398[6] الإمار...
烏克蘭總理Прем'єр-міністр України烏克蘭國徽現任杰尼斯·什米加尔自2020年3月4日任命者烏克蘭總統任期總統任命首任維托爾德·福金设立1991年11月后继职位無网站www.kmu.gov.ua/control/en/(英文) 乌克兰 乌克兰政府与政治系列条目 宪法 政府 总统 弗拉基米尔·泽连斯基 總統辦公室 国家安全与国防事务委员会 总统代表(英语:Representatives of the President of Ukraine) 总...
River in Texas, United StatesSan Marcos RiverRío San MarcosThe San Marcos River downstream from the San Marcos SpringsMap of the San Marcos RiverLocationCountryUnited StatesStateTexasPhysical characteristicsSourceSan Marcos Springs • locationSan Marcos, Texas, U.S. • elevation575 ft (175 m)[1] MouthGuadalupe River • locationGonzales County, Texas, U.S. Hays County, Texas, U.S. • coordinates29°29′27″N ...
Protected environmental areas of California, US Redwood grove in Redwood National Park According to the California Protected Areas Database (CPAD), in the state of California, United States, there are over 14,000 inventoried protected areas administered by public agencies and non-profits. In addition, there are private conservation areas and other easements.[1] They include almost one-third of California's scenic coastline, including coastal wetlands, estuaries, beaches, and dune syst...
ROC en los Juegos Olímpicos Bandera de ROCCódigo COI ROCCON Comité Olímpico Nacional ChinoJuegos Olímpicos de México 1968Deportistas 43 en 8 deportesMedallasPuesto: 42 0 0 1 1 Historia olímpicaJuegos de verano 2020 •Juegos de invierno 2022 •Otras apariciones Imperio Ruso (1900–1912) Unión Soviética (1952–1988) Equipo Unificado (1992) Rusia (1994–2014) Atletas Olímpicos de Rusia (2018)[editar datos en Wikidata] La República de China (ROC) e...
Term in common law legal systems for transporters of goods/people Admiralty law History Code of Hammurabi Corpus Juris Civilis Digesta Ordinamenta et consuetudo maris Amalfian Laws Hanseatic League Features Fishing Illegal Fisheries law Maritime transport Shipping/Ferry Cargo Freight Shipbuilding Merchant marine Cargo ship Passenger ship Mortgage Registration Marine insurance Act of God Cargo Collision General average Seaworthiness Total loss Maritime security Letter of marque Drugs Piracy Po...
United States civil rights organization American Indian Movement AbbreviationAIMLeaderDennis BanksClyde BellecourtVernon BellecourtRussell MeansFoundedJuly 1968; 55 years ago (July 1968)IdeologyIndigenismNative American civil rightsAnti-racismAnti-imperialismPan-IndianismColors Black Gold White MaroonWebsiteaimovement.orgPolitics of the United StatesPolitical partiesElections Part of a series onIndigenous rights Rights Ancestral domain Intellectual prop...
Irish brand of beer This article is about the beer. For other uses, see Guinness (disambiguation). GuinnessTypeStout (beer)ManufacturerDiageoCountry of origin IrelandAlcohol by volume 4.2%ColourBlack (officially described as very dark ruby-red)[1]FlavourDryVariantsGuinness 0.0Guinness Cold Brew Coffee BeerGuinness OriginalGuinness West Indies PorterWebsiteguinness.com Guinness (/ˈɡɪnɪs/) is a stout that originated in the brewery of Arthur Guinness at St. James's Gate, Du...
Use of technology to coordinate multiple entertainment control systems A screen capture of a common Windows-based show control program. Show control is the use of automation technology to link together and operate multiple entertainment control systems in a coordinated manner. It is distinguished from an entertainment control system, which is specific to a single theatrical department, system or effect, one which coordinates elements within a single entertainment discipline such as lighting, ...
Type of mathematical link 41 knot In mathematics, a hyperbolic link is a link in the 3-sphere with complement that has a complete Riemannian metric of constant negative curvature, i.e. has a hyperbolic geometry. A hyperbolic knot is a hyperbolic link with one component. As a consequence of the work of William Thurston, it is known that every knot is precisely one of the following: hyperbolic, a torus knot, or a satellite knot. As a consequence, hyperbolic knots can be considered plentiful. A ...