Таким чином правильний ікосаедр також можна назвати скрученою подовженою п'ятикутною біпірамідою.[2] В цьому випадку він має діедричну симетрію 5-Антипризми (D5d[en], [2+,10], (2*5), порядок 20).
Всі 12 вершин правильного ікосаедра лежать в чотирьох паралельних площинах.
Перерізом ікосаедра площиною, перпендикулярною до осей симетрії 5-го порядку (діагоналей правильного ікосаедра), може бути:
правильний п'ятикутник ; Найбільший за площею переріз у формі правильного п'ятикутника (проходить через п'ять вершин ікосаедра) ділить діагональ ікосаедра у співвідношенні
правильний десятикутник (якщо площина проходить також через центр правильного ікосаедра; таких перерізів ікосаедр має 6) [4] ;
Переріз правильного ікосаедра площиною, що проходить перпендикулярно до осі симетрії 3-го порядку паралельно до його грані і проходить через три вершини ікосаедра, має форму напівправильного рівностороннього шестикутника (з чергуванням двох типів вершин); якщо ця площина також проходить через центр ікосаедра, то переріз має форму напівправильного рівностороннього дванадцятикутника (з чергуванням двох типів вершин).
Правильний ікосаедр має 43 380 різних розгорток[3][5] (так само як і правильний додекаедр). Це означає, що існує 43380 способів зробити із ікосаедра пласку розгортку, розрізавши 11 ребер. Інші 19 ребер з'єднують 20 рівносторонніх трикутників розгортки.
Для того, щоб зафарбувати правильний ікосаедр так, що сусідні грані не матимуть однакового кольору, необхідно принаймні три кольори.
Кількість способів розфарбувати правильний ікосаедр так, щоб всі грані мали різні кольори дорівнює 20!/60 = 40 548 366 802 944 000 : група кольорів є групою перестановок з 20 елементів і має розмір 20!, тоді як порядок чистої обертової симетрії правильного ікосаедра дорівнює 60 (половина від повної симетрії, тобто 120 елементів). [2]
Найбільш щільне пакування правильних ікосаедрів в просторі (тобто таке, що має найменші пустоти між ними) має щільність 0.836357 . [6]:Стор.25
Зв'язок з правильним додекаедром
Правильний ікосаедр та правильний додекаедр є взаємно двоїстими багатогранниками. Тобто центри граней правильного ікосаедра є вершинами правильного додекаедра, і навпаки, центри граней правильного додекаедра є вершинами правильного ікосаедра.
Якщо правильний ікосаедр має ребро довжиною 1, то його топологічно двоїстий додекаедр (вершини знаходяться в центрах граней початкового ікосаедра) має ребро довжиною , а канонічно двоїстий додекаедр (напіввписані сфери канонічно-двоїстої пари багатогранників збігаються) має ребро довжиною .
Серед правильних багатогранників як ікосаедр, так і додекаедр являють собою найкраще наближення до сфери. Ікосаедр має найбільше число граней, найбільший двогранний кут і найщільніше притискається до своєї вписаної сфери. З іншого боку, додекаедр має найменший кутовий дефект, найбільший тілесний кут при вершині і максимально заповнює свою описану сферу.
Якщо додекаедр вписано у сферу, то він займає 66.49% об'єму сфери. А ікосаедр, вписаний у ту саму сферу, займає 60.54% її об'єму.
Сфера, що вписана в ікосаедр, охоплює 89,635% його об'єму порівняно з 75,47% для додекаедра.
Об'єм правильного додекаедра з довжиною ребра більш ніж у три з половиною рази більший за об'єм ікосаедра з такою самою довжиною ребер:
та .
Відношення об'ємів складає:
Додекаедр, вписаний в ікосаедр
Ікосаедр, вписаний в додекаедр
В правильний ікосаедр можна вписати правильний додекаедр таким чином, що всі 20 вершин додекаедра знаходитимуться в центрах граней ікосаедра.
Правильний ікосаедр можна вписати в правильний додекаедр таким чином, що всі 12 вершин ікосаедраа будуть розташовані в центрах 12-ти граней додекаедра.
Зв'язок з іншими правильними багатогранниками
В правильний ікосаедр може бути вписаний правильний тетраедр, притому чотири вершини тетраедра будуть суміщені з чотирма вершинами ікосаедра.
У куб з довжиною ребра можна вписати правильний ікосаедр з довжиною ребра , так, що шість взаємно паралельних ребер ікосаедра будуть розташовані відповідно на шести гранях куба і лежатимуть паралельно (або перпендикулярно) до ребер куба; решта 24 ребра лежатимуть всередині куба, всі дванадцять вершин ікосаедра лежатимуть на шести гранях куба. [7]:Стор.9
Існує 5 різних способів вписати ікосаедр в куб.
Якщо в додекаедр вписано куб, а в куб вписано ікосаедр, то ці додекаедр та ікосаедр мають однакову довжину ребра.
Ікосаедр можна вписати в октаедр, розмістивши його 12 вершин на 12 ребрах октаедра так, щоб вони розділили кожне ребро у відношенні «золотого перетину». Оскільки золоті перерізи нерівні, існує п'ять різних способів зробити це послідовно, тому в кожен октаедр можна вписати п'ять різних ікосаедрів.
Зв'язок з «золотим прямокутником»
В правильний ікосаедр ідеально вписуються три взаємно перпендикулярні і відцентровані « золоті прямокутники » з відношенням сторін , що мають спільну точку в центрі ікосаедра.
При цьому дві короткі сторони одного такого прямокутника збігаються з протилежними паралельними ребрами ікосаедра. [8]:Стор.71
Відношення радіусів однакове, як для правильного додекаедра, так і для правильного ікосаедра. Таким чином, якщо правильні додекаедр та ікосаедр мають однакові вписані сфери, то їх описані сфери також рівні між собою. Доведення цього математичного результату дано в НачалахЕвкліда.
Центр масс правильного ікосаедра знаходиться в його геометричному центрі.
Момент інерції суцільного правильного ікосаедра з масоюm та довжиною ребра a (вісь обертання проходить через протилежні вершини):[10]
Нехай описана сфера ікосаедра має радіус R. Нехай дано довільну точку в просторі і відстані від неї до вершин ікосаедра дорівнюють di . Тоді виконується рівність: [11]:стор.353, теор.7.2
Якщо точка знаходиться на описаній сфері ікосаедра, то виконується рівність:[11]:стор.354, теор.7.6
Кути
Плоскі кути граней при вершині: 60°.
Сума плоских кутів при кожній з 12 вершин дорівнює 300°.
Кути багатогранника
Кут, під яким ребро видно з центру правильного ікосаедра
Декартові координати 12-и вершин правильного ікосаедра з довжиною ребра , центр якого знаходиться в початку координат
При цьому вершини (окрім двох діаметрально протилежних вершин на осі Oz) лежать в двох паралельних площинах (паралельних до площини Oxy), в кожній з яких розташовані як вершини правильного п'ятикутника.
При цьому всі вершини лежать в трьох координатних площинах, в кожній з яких розташовані як вершини взаємно відцентрованих і взаємно ортогональних «золотих прямокутників».Осі координат Ox, Oy та Oz збігаються з осями обертової симетрії 2-го порядку, а координатні площини Oxz, Oyz та Oxy є площинами дзеркальної симетрії правильного ікосаедра.
Граф правильного ікосаедра є гамільтоновим, та має 2560 різнихгамільтонових циклів .
Гамільтонів цикл — замкнений шлях, що проходить через кожну вершину графа рівно один раз. Гамільтонів шлях між вершинами U, V існує тоді і тільки тоді, коли u и v мають різні кольори в двокольоровому розфарбуванні графа.
Повна група симетрії ікосаедра (разом з відбиттями) Ih відома як повна ікосаедрична симетрія[en] має порядок 120. Вона ізоморфна добутку групи обертової симетрії та групи другого порядку, яка утворюється при відбитті через центр ікосаедра. Повна ікосаедрична група Ih має обертову групу симетріїI як нормальну підгрупу індекса 2. Отже, Ih = I × Z2 = A5× Z2 , що відповідає елементу (тотожний елемент ,‒ 1), де Z2 записано мультиплікативно (кратно).
Зауважимо. що групи Ih (повна ікосаедрична група) та S5 (симетрична група з 5 елементів) обидві мають порядок 120, але не є ізоморфними.
Кожен багатогранник з ікосаедричною симетрією має 60 обертових симетрій (або симетрій, що зберігають орієнтацію) і 60 симетрій, що змінюють орієнтацію (які поєднують обертання і відбиття)
‒ 6 осей 5-го порядку з кутами поворотів на 72°, 144°, 216° і 288° (або 2π/5, 4π/5, 6π/5та 8π/5радіан) — проходять через протилежні вершини; на діаграмі вони показані синім кольором;
Кожна з них проходить через центр O симетрії ікосаедра а, отже, є віссю дзеркально-обертової симетрії 10-го порядку з такими ж кутами поворотів.
Повороти на чотири кути 2π/5, 4π/5, 6π/5 та 8π/5радіан при шести парах протилежних граней, дають 4∙6 = 24 поворотів цього типу.
‒ 10 осей 3-го порядку з кутами поворотів на 120° і 240° (або 2π/3 і 4π/3радіан) — проходять через центри протилежних граней (червоний колір);
Кожна з цих осей проходить через центр симетрії ікосаедра, а тому є його віссю дзеркально-обертової симетрії 6-го порядку з такими ж кутами поворотів.
Повороти на два кути 2π/3 і 4π/3радіан при десяти парах протилежних вершин дають 2∙10 = 20 поворотів цього типу.
‒ 15 осей 2-го порядку з кутом повороту на 180° (або πрадіан) — проходять через середини протилежних паралельних ребер (пурпуровий колір).
Поворот на кут πрадіан при п’ятнадцяти парах протилежних ребер, дає 1∙15= 15 поворотів цього типу.
Таким чином 24 + 20 + 15 обертів (+ тотожне перетворення) утворює підгрупу з 60 елементів, ізоморфну до знакозмінної групиA5 (групи чергування парних перестановок п'яти елементів). Це і є група I власних рухів (обертів) правильного ікосаедра.
2) Правильний ікосаедр має 15 площин дзеркальної симетрії, що проходять через вершину та середину протилежного ребра для кожної грані (на цій сфері вони виглядають як блакитні великі кола), які перетинаються під кутами у визначеному порядку, розбиваючи сферу на 120 трикутних фундаментальних областей.
3) Має центр симетрії (в ньому перетинаються всі осі та площини симетрії).
Вершини правильного ікосаедра знаходяться в точках, що відповідають осям обертання 5-го порядку.
Фелікс Кляйн написав книгу, в якій використав теорію ікосаедричних симетрій для виведення аналітичного розв'язку рівняння 5-го степеня в загальному вигляді.[15]
Характерною особливістю правильного ікосаедра (також і правильного додекаедра) є наявність в нього осей обертової симетрії 5-го порядку, які не дозволені правилами кристалографії[16]:Стор.41 , тобто в природі не існує кристалів мінералів, що мають форму правильного ікосаедра.
Першою зірчастою формою правильного ікосаедра є він сам. При продовженні (розширені) його грані перетинаються, визначаючи області в просторі (див. діаграму ззірчення) і послідовно утворюють наступні зірчасті форми.
Чотири правильногранних багатогранники Джонсона можуть бути отримані з правильного ікосаедра шляхом відсікання від нього частин. Точніше, термін відсікання означає видалення однієї або кількох вершин, ребер, граней багатогранника (відсікається у вигляді піраміди або купола), без порушення інших вершин.
При відсіканні двох протилежних наборів сусідніх вершин (тобто чотирьох вершин двох протилежних паралельних ребер) утворюється двосхилий бікупол, що має 8 вершин, 14 ребер та 8 граней (4 правильних трикутників та 4 рівнобічні трапеції).
600-комірник має ікосаедричні перерізи двох розмірів, і кожна з його 120 вершин є ікосаедричною пірамідою; правильний ікосаедр є вершинною фігурою 600-комірника.
600-комірник з одиничним радіусом описаної гіперсфери має комірки у вигляді правильного тетраедра з довжиною ребра , 20 з яких зустрічаються у кожній вершині, утворюючи ікосаедричну піраміду (4-піраміду з ікосаедром в основі). Таким чином, 600-комірник містить 120 ікосаедрів з довжиною ребра .
600-комірник також містить куби та октаедри з одиничною довжиною ребра як внутрішні елементи, утворені хордами з одиничною довжиною ребра.
120-комірник з одиничним радіусом описаної гіперсфери (іншій правильній 4-політоп, який є одночасно двоїстим до 600-комірника і з'єднанням з п'яти 600-комірників) має всі три види вписаних ікосаедрів (у додекаедр, октаедр та куб).
↑Borovik, Alexandre (2006). Coxeter Theory: The Cognitive Aspects. У Davis, Chandler; Ellers, Erich (ред.). The Coxeter Legacy. Providence, Rhode Island: American Mathematical Society. с. 17—43. ISBN978-0821837221.
H. S. M. Coxeter.Uniform polyhedra / M. S. Longuet-Higgins, J. C. P. Miller // Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences. — The Royal Society, 1954. — Т. 246, № 916. — С. 401—450. — ISSN0080-4614. — DOI:10.1098/rsta.1954.0003.
Peter R. Cromwell.Polyhedra. — Cambridge, U.K. ; New York, NY, USA : Cambridge University Press, 1997. — 451 (англ.) с. — ISBN 9-521-55432-2.
H. S. M. Coxeter, Patrick du Val, H.T. Flather, J.F. Petrie. The Fifty-nine Icosahedra. — University of Toronto studies, 1938. — P. 1-26. — (mathematical series 6)