Цей многогранник було відкрито у 1809 році Луї Пуансо[7] ; [8]:стор.149, а назву йому дав Артур Кейлі в 1859 році. [2]:стор.410
Він складається з 20 граней — правильних трикутників (десять пар трикутних граней лежать в паралельних площинах), по 5 трикутників у кожній вершині, що перетинаються між собою. Має 12 вершин, кожна з яких є вершиною зірчастого п'ятигранного кута.
Його символ Шлефлі — . Це означає, що кожна вершина оточена п'ятьма правильними трикутниками, що перетинаються між собою; або також це означає для многогранника, що його грань — правильний трикутник, а вершинна фігура — правильна п'ятипроменева зірка (пентаграма). [2]:стор.410
Має центральну ділянку кожної грані у вигляді зірчастого багатокутника, «приховану» всередині многогранника, при цьому зовні видно тільки ділянки граней у вигляді різносторонніх та рівнобедрених трикутників (певного розміру).
Великий ікосаедр є однією з зірчастих форм правильного ікосаедра, яка в різних класифікаціях має різний порядковий номер. За версією М.Веннінґера, він є 16-ю зірчастою формою ікосаедра. [10] В третьому виданні книги Г.Коксетера «59 ікосаедрів» Кейт та Девід Креннели (Crennell) повністю переробили початкову класифікацію Коксетера, і в ній великий ікосаедр описано під номером 7.
Позначення великого ікосаедра як зірчастої форми в нотації дю Валля — G.
З усіх зірчастих форм ікосаедра, великий ікосаедр є єдиним правильним многогранником.
Великий ікосаедр утворюється з правильного ікосаедра при продовженні (розширенні) його граней. Кожна грань правильного ікосаедра розширюється до її взаємного перетину з трьома гранями, що суміжні з паралельною до неї гранню..[6]:стор.443-444
Якщо кожну з граней ікосаедра продовжити необмежено, то взаємно перетинаючись, вони розмежують простір на 20 + 30 + 60 + 20 + 60 + 120 + 12 + 30 + 60 + 60 = 472 відсіки (комірки). Усі повнотілі зірчасті форми ікосаедра (ті, що не містять розривів та пустот) можна отримати послідовним приєднанням до початкового тіла таких комірок (хоча строго кажучи зірчастий многогранник утворюється від перетину несуміжних граней деякого опуклого многогранника, а не приєднанням частин до нього). Великий ікосаедр складається з усіх цих комірок, за винятком останніх шестидесяти, та є 11-ю зіркою (рахуючи від ікосаедра).[10]Wills Stellation of the Icosahedron (3) на YouTube
Його грані складені з 0 по 12-ту секції на діаграмі ззірчення правильного ікосаедра. Зовні видно 11-ту та 12-ту секції.[9]
Частина граней, що знаходиться всередині многогранника відіграє роль плоскої мембрани та не розмежовує внутрішній простір многогранника.
В великий ікосаедр можна вписати правильний додекаедр так, що всі ребра останнього будуть лежати на ребрах великого ікосаедра (На рисунку грані його сторона відповідає відрізку DE ).
Розміри деяких елементів на грані великого ікосаедра
Радіус вписаної сфери — радіус сфери, вписаної в базовий ікосаедр, з якого отримана грань великого ікосаедра; довжина ребра базового ікосаедра дорівнює .
Центр мас великого ікосаедра знаходиться в його геометричному центрі.
Момент інерції суцільного великого ікосаедра з масоюm та довжиною ребра a (вісь обертання проходить через протилежні вершини):[13]
Великий ікосододекадр[en] утворюється при повному зрізанні[en] (ректифікації) великого зірчастого додекаедра, коли зрізання вершин проводиться до точок, що лежать на серединах ребер многогранника, тобто ребра початкового многогранника фактично зникають.
Зрізаний великий зірчастийдодекаедр можна вважати виродженим неопуклим однорідним многогранником. Вершини великого зірчастого додекаедра зрізаються до тих пір, доки повністю не зникнуть «трикутні піраміди».
Візуально він виглядає як правильний ікосаедр, але має 32 грані — 20 правильних трикутників, утворених від зрізання вершин і 12 п'ятикутників, утворених від зрізання пентаграм, що знаходяться всередині многогранника. П'ятикутники зі зрізаних пентаграм насправді є виродженими десятикутниками {10/2}, що приймають форму подвійно-накритих п'ятикутників із двома множинами вершин і ребер, накладених одне на одне.
Коли n⁄d -кутник скорочується в процесі зрізання, він стає 2n⁄d -кутником.
Наприклад, зрізаний п'ятикутник { 5⁄1} стає десятикутником { 10⁄1}, а зрізана пентаграма { 5⁄2} стає подвійно-накритим п'ятикутником (тобто десятикутником, що має форму п'ятикутника) { 10⁄2} (це означає, що ми відвідаємо кожну вершину двічі, щоб завершити багатокутник).
Многогранник має 60 вершин (в кожній вершині «ікосаедра» містяться п'ять суміщених вершин многогранника) та 90 ребер (кожне ребро «ікосаедра» є потрійним — одне ребро від зрізання вершини (вершинна фігура — опуклий правильний трикутник) та два ребра від зрізання пентаграми).
Найбільш наближеним до нього многогранником є малий складений ікосододекаедр[en], який також має зовнішній вигляд ікосаедра та внутрішні п'ятикутні грані, але має іншу кількість вершин та ребер.
Процес зрізання великого ікосаедра завершується (при повному глибокому зрізанні або біректифікації) утворенням двоїстого до нього многогранника — великого зірчастого додекаедра, коли грані початкового многогранника зменшуються до точок, тобто фактично зникають.
Великий ікосаедр можна побудувати, застосувавши до трикутника Шварца (2 3 5/2) геометричну операцію однорідного «зрізання носів» (снубіфікацію[en]) в означенні Коксетера. При цьому утвориться многогранник візуально схожий на великий додекаедр, але з меншою тетраедричною симетрією: , всі грані якого — різнотипні.
Якщо початковий многогранник (або паркет) має символ Шлефлі {p, q}, то ретрокирпатий многогранник (або паркет) буде мати конфігурацію вершини (3.3.p. 3.q)/2 (тобто як звичайний кирпатий многогранник, але з чергуванням вершин).
Проєкція, ортогональна до осі симетрії 5-го порядку
Проєкція, ортогональна до осі симетрії 3-го порядку
Проєкція, ортогональна до осі симетрії 2-го порядку
Складання моделі многогранника
Великий ікосаедр можна скласти з паперу, з'єднавши разом 12 прямих пентаграмних пірамід (без основи). Кожен трикутник в цій розгортці візуально представляє частину правильного трикутника — грані великого ікосаедра.
Теоретично великий ікосаедр є жорстким многогранником (тобто його не можна безперервно деформувати в іншу конфігурацію без згинання або розриву). Але практично, через велику кількість згинів трикутних частин граней почергово в протилежні сторони, що зустрічаються в вершинах та «хибних вершинах» (точки перетину граней, що не є вершинами многогранника), модель не є жорсткою та легко деформується.
Тому для забезпечення жорсткости моделі її доцільно будувати трохи в інший спосіб. А саме, побудувати спершу основу — виїмчастий додекаедр[en] (або також увігнутий пентакісдодекаедр ). Виїмчастий додекаедр[en] є однією з зірчастих форм правильного ікосаедра (позначення в нотації дю Валля — Ef1g1.). Ці многогранники візуально схожі (відрізняються кількістю вершин, ребер та формою граней) однак моделі можуть бути побудовані з правильних трикутників. Потім до цієї основи прикріпити зірчасті піраміди, виготовлені по шаблону, вказаному на рисунку, попередньо укріпивши їх зсередини правильними трикутниками.[11]· [12]:стор.98-99
Цей многогранник також можна подати у вигляді сферичної плитки зі щільністю 7. (Одна сферична трикутна грань, обведена синім і заповнена жовтим кольорами)
Многогранник має щільність 7, що видно на цьому перерізі.
H. S. M. Coxeter.Uniform polyhedra / M. S. Longuet-Higgins, J. C. P. Miller // Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences. — The Royal Society, 1954. — Т. 246, № 916. — С. 401—450. — ISSN0080-4614. — DOI:10.1098/rsta.1954.0003.
Louis Poinsot. Memoire sur les polygones et polyèdres. — J. de l'École Polytechnique. — 1810. — Т. 9. — P. 16-48.
H. S. M. Coxeter, Patrick du Val, H.T. Flather, J.F. Petrie. The Fifty-nine Icosahedra. — University of Toronto studies, 1938. — P. 1-26. — (mathematical series 6)
Cayley, Arthur (1859). XIX. On Poinsot's four new regular solids. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. Taylor & Francis. 17 (112): 123—128.