Об'є́м — місткість геометричного тіла, тобто частини простору, обмеженої однією або декількома замкнутими поверхнями. Об'єм виражається числом кубічних одиниць, що поміщаються в певній ємкості.
Тривимірні математичні фігури також мають об'єм. Об'єми деяких простих фігур, як-от правильні прямолінійні або округлі можна легко розрахувати за допомогою арифметичнихформул. Об'єми складних форм можуть розраховуватися за допомогою інтегрального числення, при умові що існує формула для визначення межі, що обмежує фігуру. Там, де існують варіацій у формі й об'ємі, як, наприклад, різниця у відмінності людського тіла, об'єм може розраховуватися за допомогою методів у тривимірному просторі, як-от індекс об'єму тіла[en]. Одновимірні фігури (як-от прямі) і двовимірні фігури (як-от квадрати) мають нульове значення об'єму в тривимірному просторі.
Об'єм твердого тіла (правильної форми чи довільної) можна визначити кількістю витісненої рідини. Цей підхід також можна використовувати для визначення об'єму газу. Загальний об'єм двох поєднаних між собою речовин, як правило є більший за об'єм однієї з речовин. Однак, іноді одна з речовин розчиняється в іншій і їх загальний об'єм не є адитивним.[1]
Слово «об'єм» також використовують в переносному значенні для позначення загальної кількості або поточної величини. Наприклад, «об'єм попиту».
В образотворчому мистецтві об'ємом називається ілюзорна передача просторових характеристик предмета, що зображується, художніми методами.
Одиниці вимірювання
Будь-яка міра довжини утворює відповідну міру об'єму: об'єм кубу сторони якого мають задану довжину. Наприклад, кубічний сантиметр (см3) це об'єм куба, довжина сторін якого становить один сантиметр (1 см).
У Міжнародній системі одиниць (SI) одиницею вимірювання об'єму є кубічний метр (м3). Метрична система також містить таку одиницю як літр (л) для вимірювання об'єму, що дорівнює об'єму 10-сантиметрового куба. Таким чином
Тут h — значення координати в довільному напрямку всередині фігури, A(h) = площа перпендикулярного до вибраного напряму перетину при значенні координати h
Величини об'єму, звісно, залежать від використаних величин довжини — якщо довжини виміряні в метрах, об'єм вимірюватиметься кубічними метрами тощо.
Співвідношення об'ємів конуса, кулі й циліндра однакового радіусу і висоти
Вищенаведені формули можна використати для того, щоб показати що об'єми конуса, кулі і циліндра з однаковими радіусами і висотами мають пропорцію 1 : 2 : 3, відповідно.
Нехай радіус дорівнює r, а висота — h (що є 2r для кулі), тоді об'єм конуса становить
об'єм кулі становить
де об'єм циліндра —це
Вперше співвідношення об'ємів кулі і циліндра становить 2 : 3 вважають було здійснено Архімедом.[2]
Доведення формул
Куля
Об'єм кулі це інтеграл нескінченного числа нескінченно малих круглих дисків або кругів з товщиною dx. Розрахуємо об'єм кулі із центром 0 і радіусом r наступним чином.
Радіус кругів, визначено таким чином, що x-вісь проходить через них перпендикулярно, і
або
де y або z можуть бути прийняті для задавання радіусу кругу при конкретному значенні x.
Приймемо y за радіус диску, тоді об'єм кулі можна розрахувати наступним чином
Тепер
При поєднанні отримаємо
Цю формулу можна вивести ще швидше використовуючи формулу для площі поверхні сфери, що дорівнює . Об'єм кулі заповнюється нескінченно тонкими поверхнями сфер різних радіусів, і тоді об'єм кулі становитиме.
Конус
Конус є фігурою пірамідальної форми.
Об'єм конуса це інтеграл нескінченної кількості тонких кругів з товщиною dx. Розрахунок об'єму конуса з висотою h, основа якого знаходиться в центрі координат (0, 0, 0) і має радіус r, є наступним.
Радіус плаского круга дорівнює r якщо x = 0 і 0 якщо x = h, і змінюється лінійно між цими значеннями,
↑Один літр цукру (приблизно 970 грамів) може розчинитися в 0.6 літрах гарячої води, утворюючи в результаті об'єм менший за один літр. Solubility. Процитовано 1 травня 2010. Up to 1800 grams of sucrose can dissolve in a liter of water.
↑Rorres, Chris. Tomb of Archimedes: Sources. Courant Institute of Mathematical Sciences. Процитовано 2 січня 2007.