У Вікіпедії є статті про інші значення цього терміна: Куля (значення).
Запит «Кулька» перенаправляє сюди; див. також інші значення.
Куля — тіло, утворене обертанням круга навколо його діаметра. Центром кулі називають центр круга, обертанням якого її утворено. Відрізок, який сполучає центр кулі з довільною точкою її поверхні, — радіус кулі. Відрізок, який сполучає дві довільні точки поверхні кулі, — її хорда. Хорда кулі, яка проходить через центр, — діаметр кулі.
Також можливе інше визначення терміна «куля» — це множина всіх точок простору, що перебувають від заданої точки на відстані, не більшій за дану відстань . При цьому точка називається центром, а — радіусом кулі. Будь-який відрізок, який сполучає центр кулі з точкою кульової поверхні, також називається радіусом.
Поверхня кулі називається сферою. Також дуже часто кулею називають частину простору, обмежену сферою.
Взагалі, рівняння кулі в n-вимірному просторі виглядає як
, де — координати її центра.
Куля в 2-вимірному просторі — круг, а в n-вимірному, якщо , вона називається гіперкулею.
Площа сфери та об'єм кулі
Площу сфери, яка обмежує кулю з радіусом , можна підрахувати за формулою
, що приблизно дорівнює .
Площа поверхні кулі є найменшою серед площ поверхонь стереометричних тіл з однаковим об'ємом. Об'єм кулі можна знайти за формулою
.
Переріз кулі площиною
Будь-який переріз кулі площиною є круг. Центр цього круга є основою перпендикуляра, опущеного з центра кулі на січну площину. Радіус такого перерізу визначається формулою
, де — радіус кулі, — відстань від центра кулі до перерізу.
Площина, яка проходить через центр кулі, називається діаметральною площиною, переріз нею кулі — великим кругом, а переріз сфери — великим колом. Радіус великого круга та великого кола дорівнює радіусові кулі. Будь-яка діаметральна площина кулі є її площиною симетрії.
Сегмент кулі — це та її частина, що утворюється внаслідок перерізу площиною. Основними величинами, які характеризують сегмент, є радіус кулі та довжина перпендикуляра, опущеного на центр перерізу зі сфери, . Довжина цього перпендикуляра також дорівнює різниці між радіусом і відстанню від центра до перерізу , тобто . Таким чином об'єм сегмента дорівнює
Сектор складається з кульового сегмента та конуса, основа якого збігається з основою сегмента, а вершина — з центром кулі. Сектор характеризують радіус кулі та довжина перпендикуляра, опущеного на центр основи конуса зі сфери, .
Об'єм сектора:
Куля називається описаною навколо багатогранника, якщо всі вершини багатогранника лежать на поверхні кулі (сфери). В цьому випадку багатогранник називають вписаним в кулю. Центр кулі, описаної навколо багатогранника, рівновіддалений від всіх його вершин, тобто є точкою перетину площин, проведених через середини ребер багатогранника (призми, піраміди) перпендикулярно до них. Відстань від центра кулі до вершин багатогранника — його радіус.
Куля називається вписаною в багатогранник, якщо всі грані багатогранника дотикаються до кулі. Багатогранник у цьому випадку називається описаним навколо кулі (сфери). Центр кулі, вписаної у багатогранник, рівновіддалений від усіх його граней. Він є точкою перетину півплощин, проведених через ребра двограннихкутів, утворених двома суміжними гранями, які поділяють цей кут навпіл. Відстань від центра кулі до граней — його радіус.
Додаткові відомості
Куля так само, як циліндр і конус, є тілом обертання. Вона утворюється при обертанні півкруга навколо його діаметра як осі. Цей діаметр називають віссю кулі, а його кінці — полюсами кулі.
Відрізок, який сполучає дві точки кульової поверхні і проходить через центр кулі, називається діаметром. Кінці будь-якого діаметра називаються діаметрально протилежними точками кулі.