Має 12 граней — правильних п'ятипроменевих зірок (пентаграм), які перетинаються між собою та 20 вершин. Шість пар граней лежать в паралельних площинах, В кожній вершині перетинаються три грані.
Його символ Шлефлі — . Це означає, що кожна вершина оточена трьома гранями (пентаграмами {5/2}). [1]:стор.410
Має центральну опуклу ділянку кожної грані, «приховану» всередині багатогранника, при цьому зовні видно тільки частину граней у вигляді рівнобедрених трикутніиків.
Жовтим кольором зображено грань великого зірчастого додекаедра
Утворення грані великого зірчастого додекаедра
Великий зірчастий додекаедр є третьою та останньою зірчастою формою правильного додекаедра. Його грані складені з нульового, першого, другого та третього відсіків на діаграмі ззірчення правильного додекаедра. [4]:стор.19
Великий зірчастий додекаедр утворюється з правильного додекаедра при продовженні (розширенні) його граней. Кожна грань правильного додекаедра розширюється до її взаємного перетину з п'ятьма не суміжними до неї гранями. При цьому виникають два можливих випадки: опуклий правильний п'ятикутник — грань великого додекаедра, та правильна п'ятипроменева зірка (для якої вказаний п'ятикутник є ядром) — грань великого зірчастого додекаедра.[5]:стор.443
Також великий зірчастий додекаедр є радіально-опуклим зірчастим багатогранником, тобто кожен промінь, що виходить з його центра, перетинає багатогранник лише в одній точці.[7]
Як нарощення правильного ікосаедра
Багатогранник, візуально схожий на великий зірчастий додекаедр, з довжиною ребра можна отримати з правильного ікосаедра з довжиною ребра , наростивши на його гранях прямі трикутні піраміди, висотою .
Але отриманий таким чином багатогранник схожий на великий зірчастий додекаедр тільки візуально, але насправді ним не є, оскільки має додаткові вершини та ребра, що належать правильному ікосаедру та цим пірамідам (два ребра трикутних пірамід та одне ребро ікосаедра лежать на одній прямій і візуально створюють враження одного ребра).
Вписана та напіввписана сфери повністю лежать всередині багатогранника та не виходять за його межі.
Центр мас великого зірчастого додекаедра знаходиться в його геометричному центрі.
Момент інерції суцільного великого зірчастого додекаедра з одиничною масою та одиничною довжиною ребра:[8]
Координати вершин
Як було зазначено вище, великий зірчастий додекаедр має таке ж розташування вершин[en], як і правильний додекаедр, а отже, вершини великого зірчастого додекаедра з довжиною ребра та правильного додекаедра з довжиною ребра в декартовій системі координат збігаються та мають наступні координати:[9]
— цей набір координат формує вершини куба, вписаного в додекаедр, а отже, і в вершини великого зірчастого додекаедра; ребро цього куба (відстань між найближчими несусідніми вершинами великого зірчастого додекаедра) дорівнює
Наступні 12 вершин формують взаємно відцентровані та і взаємно ортогональні золоті прямокутники, що вписані в вершини додекаедра, а отже, і в вершини великого зірчастого додекаедра, та розташовані в координатних площинах:
Осі координат Ox, Oy та Oz збігаються з трьома осями симетрії 2-го порядку.
Координатні площини Oxz, Oyz та Oxy є площинами симетрії багатогранника.
Також, великий зірчастий додекаедр з довжиною ребра (при цьому довжина ребра додекаедра, що має те ж розташування вершин, дорівнює ) в декартовій системі координат має вершини з наступними координатами:[10]
, , ;
, , ;
, , ;
, , .
При цьому, вершини додекаедра, а отже, і в вершини великого зірчастого додекаедра, лежать по п'ять у чотирьох паралельних площинах (паралельних до площини Oxy), в кожній з яких розташовані як вершини правильного п'ятикутника. Вісь Oz збігається з однією з осей обертової симетрії 5-го порядку, вісь Oy збігається з однією з осей обертової симетрії 2-го порядку, а площина Oxz є площиною дзеркальної симетрії. Центр багатогранника знаходиться в початку координат.
Зрізаний великий зірчастийдодекаедр можна вважати виродженим неопуклим однорідним багатогранником. Вершини великого зірчастого додекаедра зрізаються до тих пір, доки повністю не зникнуть «трикутні піраміди».
Візуально він виглядає як правильний ікосаедр, але має 32 грані — 20 правильних трикутників, утворених від зрізання вершин і 12 п'ятикутників, утворених від зрізання пентаграм, що знаходяться всередині багатогранника. П'ятикутники зі зрізаних пентаграм насправді є виродженими десятикутниками {10/2}, що приймають форму подвійно-накритих п'ятикутників із двома множинами вершин і ребер, накладених одне на одне.
Коли n⁄d -кутник скорочується в процесі зрізання, він стає 2n⁄d -кутником.
Наприклад, зрізаний п'ятикутник { 5⁄1 } стає десятикутником { 10⁄1 }, а зрізана пентаграма { 5⁄2 } стає подвійно-накритим п'ятикутником (тобто десятикутником, що має форму п'ятикутника) { 10⁄2 } (це означає, що ми відвідаємо кожну вершину двічі, щоб завершити багатокутник).
Багатогранник має 60 вершин (в кожній вершині «ікосаедра» містяться п'ять суміщених вершин багатогранника) та 90 ребер (кожне ребро «ікосаедра» є потрійним — одне ребро від зрізання вершини (вершинна фігура — опуклий правильний трикутник) та два ребра від зрізання пентаграми).
Найбільш наближеним до нього багатогранником є малий складений ікосододекаедр[en], який також має зовнішній вигляд ікосаедра та внутрішні п'ятикутні грані, але має іншу кількість вершин та ребер.
Великий ікосододекадр[en] утворюється при повному зрізанні[en] (ректифікації) великого зірчастого додекаедра, коли зрізання вершин проводиться до точок, що лежать на серединах ребер багатогранника, тобто ребра початкового багатогранника фактично зникають.
Процес зрізання великого зірчастого додекаедра завершується (при повному глибокому зрізанні або біректифікації) утворенням двоїстого до нього багатогранника — великого ікосаедра, коли грані початкового багатогранника зменшуються до точок, тобто фактично зникають.
Цей багатогранник також можна подати у вигляді сферичної плитки зі щільністю 7. (Одна сферична грань у вигляді п'ятипроменевої зірки, обведена синім і заповнена жовтим кольорами)
↑Gratrix.net - Uniform Polyhedra Summary (англ.) . Архів оригіналу за 16 квітня 2024. Процитовано 17 травня 2024.{{cite web}}: Обслуговування CS1: bot: Сторінки з посиланнями на джерела, де статус оригінального URL невідомий (посилання)
H. S. M. Coxeter.Uniform polyhedra / M. S. Longuet-Higgins, J. C. P. Miller // Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences. — The Royal Society, 1954. — Т. 246, № 916. — С. 401—450. — ISSN0080-4614. — DOI:10.1098/rsta.1954.0003.
Cayley, Arthur (1859). XIX. On Poinsot's four new regular solids. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. Taylor & Francis. 17 (112): 123—128.