Squared triangular number

A square whose side length is a triangular number can be partitioned into squares and half-squares whose areas add to cubes. From Gulley (2010). The nth coloured region shows n squares of dimension n by n (the rectangle is 1 evenly divided square), hence the area of the nth region is n times n × n.

In number theory, the sum of the first n cubes is the square of the nth triangular number. That is,

The same equation may be written more compactly using the mathematical notation for summation:

This identity is sometimes called Nicomachus's theorem, after Nicomachus of Gerasa (c. 60c. 120 CE).

History

Nicomachus, at the end of Chapter 20 of his Introduction to Arithmetic, pointed out that if one writes a list of the odd numbers, the first is the cube of 1, the sum of the next two is the cube of 2, the sum of the next three is the cube of 3, and so on. He does not go further than this, but from this it follows that the sum of the first cubes equals the sum of the first odd numbers, that is, the odd numbers from 1 to . The average of these numbers is obviously , and there are of them, so their sum is .

Many early mathematicians have studied and provided proofs of Nicomachus's theorem. Stroeker (1995) claims that "every student of number theory surely must have marveled at this miraculous fact".[1] Pengelley (2002) finds references to the identity not only in the works of Nicomachus in what is now Jordan in the 1st century CE, but also in those of Aryabhata in India in the 5th century, and in those of Al-Karaji c. 1000 in Persia.[2] Bressoud (2004) mentions several additional early mathematical works on this formula, by Al-Qabisi (10th century Arabia), Gersonides (c. 1300, France), and Nilakantha Somayaji (c. 1500, India); he reproduces Nilakantha's visual proof.[3]

Numeric values; geometric and probabilistic interpretation

All 36 (= (1 + 2 + 3)2 = 13 + 23 + 33) rectangles, including 14 (= 12 + 22 + 32) squares (red), in a 3 × 3 square (4 × 4 vertex) grid

The sequence of squared triangular numbers is[4]

0, 1, 9, 36, 100, 225, 441, 784, 1296, 2025, 3025, 4356, 6084, 8281, ... .

These numbers can be viewed as figurate numbers, a four-dimensional hyperpyramidal generalization of the triangular numbers and square pyramidal numbers.

As Stein (1971) observes, these numbers also count the number of rectangles with horizontal and vertical sides formed in an grid. For instance, the points of a grid (or a square made up of three smaller squares on a side) can form 36 different rectangles. The number of squares in a square grid is similarly counted by the square pyramidal numbers.[5]

The identity also admits a natural probabilistic interpretation as follows. Let be four integer numbers independently and uniformly chosen at random between 1 and . Then, the probability that is the largest of the four numbers equals the probability that is at least as large as and that is at least as large as . That is, For any particular value of , the combinations of , , and that make largest form a cube so (adding the size of this cube over all choices of }) the number of combinations of for which is largest is a sum of cubes, the left hand side of the Nichomachus identity. The sets of pairs with and of pairs with form isosceles right triangles, and the set counted by the right hand side of the equation of probabilities is the Cartesian product of these two triangles, so its size is the square of a triangular number on the right hand side of the Nichomachus identity. The probabilities themselves are respectively the left and right sides of the Nichomachus identity, normalized to make probabilities by dividing both sides by .[citation needed]

Proofs

Charles Wheatstone (1854) gives a particularly simple derivation, by expanding each cube in the sum into a set of consecutive odd numbers. He begins by giving the identity That identity is related to triangular numbers in the following way: and thus the summands forming start off just after those forming all previous values up to . Applying this property, along with another well-known identity: produces the following derivation:[6]

Row (1893) obtains another proof by summing the numbers in a square multiplication table in two different ways. The sum of the ith row is i times a triangular number, from which it follows that the sum of all the rows is the square of a triangular number. Alternatively, one can decompose the table into a sequence of nested gnomons, each consisting of the products in which the larger of the two terms is some fixed value. The sum within each gmonon is a cube, so the sum of the whole table is a sum of cubes.[7]

Visual demonstration that the square of a triangular number equals a sum of cubes.

In the more recent mathematical literature, Edmonds (1957) provides a proof using summation by parts.[8] Stein (1971) uses the rectangle-counting interpretation of these numbers to form a geometric proof of the identity.[9] Stein observes that it may also be proved easily (but uninformatively) by induction, and states that Toeplitz (1963) provides "an interesting old Arabic proof".[5] Kanim (2004) provides a purely visual proof,[10] Benjamin & Orrison (2002) provide two additional proofs,[11] and Nelsen (1993) gives seven geometric proofs.[12]

Generalizations

A similar result to Nicomachus's theorem holds for all power sums, namely that odd power sums (sums of odd powers) are a polynomial in triangular numbers. These are called Faulhaber polynomials, of which the sum of cubes is the simplest and most elegant example. However, in no other case is one power sum a square of another.[8]

Stroeker (1995) studies more general conditions under which the sum of a consecutive sequence of cubes forms a square.[1] Garrett & Hummel (2004) and Warnaar (2004) study polynomial analogues of the square triangular number formula, in which series of polynomials add to the square of another polynomial.[13]

Notes

  1. ^ a b Stroeker (1995).
  2. ^ Pengelley (2002).
  3. ^ Bressoud (2004).
  4. ^ Sloane, N. J. A. (ed.), "Sequence A000537", The On-Line Encyclopedia of Integer Sequences, OEIS Foundation
  5. ^ a b Stein (1971).
  6. ^ Wheatstone (1854).
  7. ^ Row (1893).
  8. ^ a b Edmonds (1957).
  9. ^ Stein (1971); see also Benjamin, Quinn & Wurtz 2006
  10. ^ Kanim (2004).
  11. ^ Benjamin & Orrison (2002).
  12. ^ Nelsen (1993).
  13. ^ Garrett & Hummel (2004); Warnaar (2004)

References

Read other articles:

Untuk kegunaan lain, lihat Jakarta (disambiguasi). Jakarta TimurKota administrasiAtas ke bawah; kiri ke kanan': Jakarta dari Stasiun Jatinegara, Masjid Baiturrahim Pondok Kelapa, dan Halte Transjakarta Jatinegara LambangMotto: Bambu apus - Sri guntingPetaJakarta TimurPetaKoordinat: 6°13′S 106°56′E / 6.21°S 106.94°E / -6.21; 106.94Negara IndonesiaProvinsiDKI JakartaTanggal berdiri28 Agustus 1978Dasar hukumUU No. 25 Tahun 1978Ibu kotaCakungJumlah satuan...

 

Perbandingan antara lukisan Rembrandt dan lukisan Caravaggio. Dua orang pelukis kelas berat abad ke-17 yang bersilangan: Michaelangelo Merisi dari Italia yang lebih dikenal dengan nama Caravaggio (1571-1610) dan pelukis Belanda Rembrandt van Rijn (1606-1669). Keduanya adalah master dalam chiaroscuro. Lukisan-lukisan kedua artis ini disajikan secara berdampingan dan diperbandingkan perbedaan dan persamaannya, baik dari segi pengaturan cahaya, emosi dan ekspresi yang ditampilkan, maupun orang-o...

 

† Человек прямоходящий Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:Синапсиды�...

Pour les articles homonymes, voir Histoire (homonymie). Cet article concerne la discipline scientifique. Pour l'histoire de l'humanité, voir Histoire du monde. Ne doit pas être confondu avec Histologie. HistoireHistoria, allégorie de l'Histoire. Peinture de Nikólaos Gýzis.Partie de Lettres Sciences humaines et socialesPratiqué par HistorienFondateur Hérodote (dans la tradition occidentale)Histoire Historiographiemodifier - modifier le code L’histoire est à la fois l'étude et l...

 

Château de Gizeux Période ou style Médiéval et Renaissance Type Château de la Loire Début construction XIIIe siècle Fin construction XVIIIe siècle Propriétaire initial Du Bellay (Famille) Destination initiale Château Propriétaire actuel Famille de Laffon Protection  Classé MH (1945) Coordonnées 47° 23′ 26″ nord, 0° 12′ 22″ est Pays France Région historique Anjou Région Centre-Val de Loire Département Indre-et-Loire C...

 

  提示:此条目页的主题不是中華人民共和國最高領導人。 中华人民共和国 中华人民共和国政府与政治系列条目 执政党 中国共产党 党章、党旗党徽 主要负责人、领导核心 领导集体、民主集中制 意识形态、组织 以习近平同志为核心的党中央 两个维护、两个确立 全国代表大会 (二十大) 中央委员会 (二十届) 总书记:习近平 中央政治局 常务委员会 中央书记处 �...

此條目可能包含不适用或被曲解的引用资料,部分内容的准确性无法被证實。 (2023年1月5日)请协助校核其中的错误以改善这篇条目。详情请参见条目的讨论页。 各国相关 主題列表 索引 国内生产总值 石油储量 国防预算 武装部队(军事) 官方语言 人口統計 人口密度 生育率 出生率 死亡率 自杀率 谋杀率 失业率 储蓄率 识字率 出口额 进口额 煤产量 发电量 监禁率 死刑 国债 ...

 

International Encyclopedia of Sexuality EditorsRobert T. FrancoeurRaymond J. NoonanLanguageEnglishPublication date1997–2001Media typePrintISBN0826412742 The International Encyclopedia of Sexuality is a four-volume reference work on human sexuality, organized by country. It is also available online. It was published between 1997 and 2001 and was edited by Robert T. Francoeur and Raymond J. Noonan with contributions from academics worldwide including Ramsey Elkholy.[1] An updated...

 

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...

Contoh medan listrik yang timbul dari muatan listrik q 1 {\displaystyle q_{1}} dan q 2 {\displaystyle q_{2}} Artikel ini merupakan bagain dari seriListrik dan MagnetMichael Faraday. Bapak kelistrikan dunia, dan sosok penting pada ilmu kemagnetan. Buku rujukan Statika listrik Muatan listrik Medan listrik Insulator Konduktor Ketribolistrikan Induksi Listrik Statis Hukum Coulomb Hukum Gauss Fluks listrik / energi potensial Momen polaritas listirk Statika magnet Hukum Ampere Medan magnet Mag...

 

Cloud storage and cloud computing service by Apple iCloudThe iCloud.com web interfaceTypeCloud serviceLaunch dateOctober 12, 2011; 12 years ago (2011-10-12)StatusActivePricing modelFree; optional subscription for more storageWebsiteicloud.com iCloud is a cloud service developed by Apple Inc. Launched on October 12, 2011, iCloud enables users to store and sync data across devices, including Apple Mail, Apple Calendar, Apple Photos, Apple Notes, contacts, settings, backups, an...

 

Questa voce sull'argomento stagioni delle società calcistiche italiane è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Voce principale: Associazione Calcio Fanfulla 1874. Associazione Sportiva FanfullaStagione 1964-1965Sport calcio Squadra Fanfulla Allenatore Fausto Braga Presidente Ennio Paleari Serie C18° (retrocesso in Serie D) Maggiori presenzeCampionato: Paleari (34) Miglior marcatoreCampio...

كأس رابطة الدول المستقلةمعلومات عامةالتكرر 1 سنة البلد لاتفيا تاريخ التأسيس 1993 الجهة المنظمة الاتحاد الروسي لكرة القدم موقع الويب com-cup.com… (الإنجليزية، ‏الروسية) تعديل - تعديل مصدري - تعديل ويكي بيانات كأس رابطة الدول المستقلة (بالروسية: Кубок чемпионов Содружества, Кубок ...

 

Sri Lanka PostCompany typeDepartmentIndustryPostal serviceFounded1 April 1798 (226 years ago) (1798-04-01)HeadquartersGeneral Post Office, Colombo, Sri LankaArea servedSri LankaKey peopleBandula Gunawardane (Ministry of Post)[1]ServicesPost office, Mail delivery, banking, sourierRevenue Rs 6.996 billion (2017)[2]Net income Rs 477,005 (2017)[2]OwnerGovernment of Sri LankaNumber of employees>80,000 (2017)[2]ParentMinistry of PostWebsitewww.slpos...

 

Shirley MacLaineMacLaine pada tahun 1960LahirShirley MacLean Beaty24 April 1934 (umur 90) RichmondPekerjaanAktris, penyanyi, penari, penulis, aktivisTahun aktif1953–sekarangSuami/istriSteve Parker (m. 1954–1982; bercerai; 1 anak)AnakSachi ParkerKeluargaWarren Beatty (saudara)Academy AwardsAcademy Award for Best Actress 1983 Terms of EndearmentEmmy AwardsPrimetime Emmy Award for Outstanding Variety, Music, or Comedy Special 1976 Gypsy in My SoulGolden Globe AwardsGolden Globe Aw...

ОбластьЛьвовская областьукр. Львівська область Флаг Герб 49°43′03″ с. ш. 23°57′01″ в. д.HGЯO Страна  Украина Включает 7 районов Адм. центр  Львов Председатель областной государственной администрации Максим Зиновьевич Козицкий[1] Председатель областного со�...

 

Statistical method that summarizes and or integrates data from multiple sources For the process in historical linguistics known as metanalysis, see Rebracketing. Part of a series onResearch Research design Research proposal Research question Writing Argument Referencing Research strategy Interdisciplinary Multimethodology Qualitative Art-based Quantitative Philosophical schools Antipositivism Constructivism Critical rationalism Empiricism Fallibilism Positivism Postpositivism Pragmatism Reali...

 

シカゴ・カブスChicago Cubs 1871年創設 所属リーグ ナショナル・アソシエーション(1871年 - 1875年) ナショナルリーグ (1876年 - ) 東地区 (1969年 - 1993年) 中地区 (1994年 - )' チーム名 シカゴ・カブス (1902年 - ) シカゴ・ホワイトストッキングス (1876年 - 1889年) シカゴ・コルツ (1890年 - 1897年) シカゴ・オーファンズ (1898年 - 1901年) シカゴ・カブス (1902年 - ) 本拠地 1876-現在 イリノ�...

Attributing parts of the self to others Part of a series of articles onPsychoanalysis Concepts Psychosexual development Psychosocial development (Erikson) Unconscious Preconscious Consciousness Psychic apparatus Id, ego and superego Ego defenses Projection Introjection Libido Drive Transference Countertransference Resistance Denial Dreamwork Cathexis Important figures Abraham Adler Balint Bion Breuer Chodorow Erikson Fairbairn Ferenczi Freud (Anna) Freud (Sigmund) Fromm Guattari Horney Irigar...

 

Solid mineral mass which forms in a bodily organ or duct For other uses, see Calculus (disambiguation). Medical conditionCalculusOther namesStoneAn 8-mm kidney stoneSymptomsPainComplicationsInflammationPreventionDietTreatmentDrinking water, surgery A calculus (pl.: calculi), often called a stone, is a concretion of material, usually mineral salts, that forms in an organ or duct of the body. Formation of calculi is known as lithiasis (/ˌlɪˈθaɪəsɪs/). Stones can cause a number of medical...