Thabit number

Thabit prime
Named afterThābit ibn Qurra
Conjectured no. of termsInfinite
Subsequence ofThabit numbers
First terms2, 5, 11, 23, 47, 95, 191, 383, 6143, 786431
OEIS indexA007505

In number theory, a Thabit number, Thâbit ibn Qurra number, or 321 number is an integer of the form for a non-negative integer n.

The first few Thabit numbers are:

2, 5, 11, 23, 47, 95, 191, 383, 767, 1535, 3071, 6143, 12287, 24575, 49151, 98303, 196607, 393215, 786431, 1572863, ... (sequence A055010 in the OEIS)

The 9th century mathematician, physician, astronomer and translator Thābit ibn Qurra is credited as the first to study these numbers and their relation to amicable numbers.[1]

Properties

The binary representation of the Thabit number 3·2n−1 is n+2 digits long, consisting of "10" followed by n 1s.

The first few Thabit numbers that are prime (Thabit primes or 321 primes):

2, 5, 11, 23, 47, 191, 383, 6143, 786431, 51539607551, 824633720831, ... (sequence A007505 in the OEIS)

As of October 2023, there are 68 known prime Thabit numbers. Their n values are:[2][3][4][5]

0, 1, 2, 3, 4, 6, 7, 11, 18, 34, 38, 43, 55, 64, 76, 94, 103, 143, 206, 216, 306, 324, 391, 458, 470, 827, 1274, 3276, 4204, 5134, 7559, 12676, 14898, 18123, 18819, 25690, 26459, 41628, 51387, 71783, 80330, 85687, 88171, 97063, 123630, 155930, 164987, 234760, 414840, 584995, 702038, 727699, 992700, 1201046, 1232255, 2312734, 3136255, 4235414, 6090515, 11484018, 11731850, 11895718, 16819291, 17748034, 18196595, 18924988, 20928756, 22103376, ... (sequence A002235 in the OEIS)

The primes for 234760 ≤ n ≤ 3136255 were found by the distributed computing project 321 search.[6]

In 2008, PrimeGrid took over the search for Thabit primes.[7] It is still searching and has already found all currently known Thabit primes with n ≥ 4235414.[4] It is also searching for primes of the form 3·2n+1, such primes are called Thabit primes of the second kind or 321 primes of the second kind.

The first few Thabit numbers of the second kind are:

4, 7, 13, 25, 49, 97, 193, 385, 769, 1537, 3073, 6145, 12289, 24577, 49153, 98305, 196609, 393217, 786433, 1572865, ... (sequence A181565 in the OEIS)

The first few Thabit primes of the second kind are:

7, 13, 97, 193, 769, 12289, 786433, 3221225473, 206158430209, 6597069766657, 221360928884514619393, ... (sequence A039687 in the OEIS)

Their n values are:

1, 2, 5, 6, 8, 12, 18, 30, 36, 41, 66, 189, 201, 209, 276, 353, 408, 438, 534, 2208, 2816, 3168, 3189, 3912, 20909, 34350, 42294, 42665, 44685, 48150, 54792, 55182, 59973, 80190, 157169, 213321, 303093, 362765, 382449, 709968, 801978, 916773, 1832496, 2145353, 2291610, 2478785, 5082306, 7033641, 10829346, 16408818, ... (sequence A002253 in the OEIS)

Connection with amicable numbers

When both n and n−1 yield Thabit primes (of the first kind), and is also prime, a pair of amicable numbers can be calculated as follows:

and

For example, n = 2 gives the Thabit prime 11, and n−1 = 1 gives the Thabit prime 5, and our third term is 71. Then, 22=4, multiplied by 5 and 11 results in 220, whose divisors add up to 284, and 4 times 71 is 284, whose divisors add up to 220.

The only known n satisfying these conditions are 2, 4 and 7, corresponding to the Thabit primes 11, 47 and 383 given by n, the Thabit primes 5, 23 and 191 given by n−1, and our third terms are 71, 1151 and 73727. (The corresponding amicable pairs are (220, 284), (17296, 18416) and (9363584, 9437056))

Generalization

For integer b ≥ 2, a Thabit number base b is a number of the form (b+1)·bn − 1 for a non-negative integer n. Also, for integer b ≥ 2, a Thabit number of the second kind base b is a number of the form (b+1)·bn + 1 for a non-negative integer n.

The Williams numbers are also a generalization of Thabit numbers. For integer b ≥ 2, a Williams number base b is a number of the form (b−1)·bn − 1 for a non-negative integer n.[8] Also, for integer b ≥ 2, a Williams number of the second kind base b is a number of the form (b−1)·bn + 1 for a non-negative integer n.

For integer b ≥ 2, a Thabit prime base b is a Thabit number base b that is also prime. Similarly, for integer b ≥ 2, a Williams prime base b is a Williams number base b that is also prime.

Every prime p is a Thabit prime of the first kind base p, a Williams prime of the first kind base p+2, and a Williams prime of the second kind base p; if p ≥ 5, then p is also a Thabit prime of the second kind base p−2.

It is a conjecture that for every integer b ≥ 2, there are infinitely many Thabit primes of the first kind base b, infinitely many Williams primes of the first kind base b, and infinitely many Williams primes of the second kind base b; also, for every integer b ≥ 2 that is not congruent to 1 modulo 3, there are infinitely many Thabit primes of the second kind base b. (If the base b is congruent to 1 modulo 3, then all Thabit numbers of the second kind base b are divisible by 3 (and greater than 3, since b ≥ 2), so there are no Thabit primes of the second kind base b.)

The exponent of Thabit primes of the second kind cannot congruent to 1 mod 3 (except 1 itself), the exponent of Williams primes of the first kind cannot congruent to 4 mod 6, and the exponent of Williams primes of the second kind cannot congruent to 1 mod 6 (except 1 itself), since the corresponding polynomial to b is a reducible polynomial. (If n ≡ 1 mod 3, then (b+1)·bn + 1 is divisible by b2 + b + 1; if n ≡ 4 mod 6, then (b−1)·bn − 1 is divisible by b2b + 1; and if n ≡ 1 mod 6, then (b−1)·bn + 1 is divisible by b2b + 1) Otherwise, the corresponding polynomial to b is an irreducible polynomial, so if Bunyakovsky conjecture is true, then there are infinitely many bases b such that the corresponding number (for fixed exponent n satisfying the condition) is prime. ((b+1)·bn − 1 is irreducible for all nonnegative integer n, so if Bunyakovsky conjecture is true, then there are infinitely many bases b such that the corresponding number (for fixed exponent n) is prime)

Pierpont numbers are a generalization of Thabit numbers of the second kind .

References

  1. ^ Rashed, Roshdi (1994). The development of Arabic mathematics: between arithmetic and algebra. Vol. 156. Dordrecht, Boston, London: Kluwer Academic Publishers. p. 277. ISBN 0-7923-2565-6.
  2. ^ "How many digits these primes have". Archived from the original on 2011-09-27. Retrieved 2006-11-14.
  3. ^ "PrimePage Primes: 3 · 2^4235414 - 1". t5k.org.
  4. ^ a b "Primes with 800,000 or More Digits". Retrieved June 22, 2024.
  5. ^ "PrimeGrid Primes search for 3*2^n - 1". www.primegrid.com.
  6. ^ "The status of the search". Archived from the original on 2011-09-27. Retrieved 2006-11-14.
  7. ^ "PrimePage Bios: 321search".
  8. ^ "List of Williams primes (of the first kind) base 3 to 2049 (for exponent ≥ 1)".

Read other articles:

English painter (1860–1927) Solomon Joseph SolomonSelf-portrait, c. 1896Born16 September 1860 (1860-09-16)London, EnglandDied27 July 1927 (1927-07-28) (aged 66)Birchington-on-Sea, Kent, EnglandNationalityBritishKnown forPortrait paintingNotable workPsycheElectedRoyal AcademyPresident, Royal Society of British Artists Ajax and Cassandra (1886). In the collection of the Art Gallery of Ballarat in Victoria, Australia[1] Portrait of French mezzo-soprano Blanche...

 

Untuk kegunaan lain, lihat Borobudur (disambiguasi). BorobudurꦧꦫꦧꦸꦝꦸꦂBagian Arupadhatu dari Candi BorobudurAgamaAfiliasiBuddhismeDistrikKecamatan Borobudur - MagelangProvinsiMencoloFestivalWaisakStatusMasih digunakanLokasiMunisipalitasKabupaten MagelangCercleFNegaraArjunaArsitekturArsitekGunadharma (legenda)TipeCandiGaya arsitekturPiramida bertingkat dan stupaPeletakan batu pertama770 MRampung825 MSpesifikasiPanjang123 meter (404 ft)Lebar123 meter (404 ft)Tinggi maksim...

 

Eutrofikasi dapat menyebabkan mekarnya alga seperti yang terjadi di sungai dekat Chengdu, Sichuan, Cina. Yang seperti ini kerap kali merupakan pertumbuhan alga yang membahayakan. Eutrofikasi adalah proses di mana seluruh badan air, atau sebagian darinya, secara bertahap mengalami peningkatan kadar mineral dan nutrien, terutama nitrogen dan fosforus. Eutrofikasi juga didefinisikan sebagai peningkatan produktivitas fitoplankton yang disebabkan oleh meningkatnya unsur nutrien.[1]:459 Bad...

Noor Sabri Sabri bersama Zakho pada 2010Informasi pribadiNama lengkap Noor Sabri Abbas Hassan Al-BairawiTanggal lahir 16 Desember 1984 (umur 39)Tempat lahir Baghdad, IrakTinggi 1,84 m (6 ft 1⁄2 in)Posisi bermain Penjaga GawangKarier junior0000−1998 Al-Sinaa1998−1999 Al-ShortaKarier senior*Tahun Tim Tampil (Gol)1999−2000 Al-Kadhimiya (0)2000−2003 Al-Zawra'a (0)2003−2004 Al-Quwa Al-Jawiya 4 (0)2004−2006 Al-Talaba (0)2006−2007 Mes Kerman 24 (0)2007−2008...

 

Untuk kegunaan lain, lihat Asia. Kekaisaran Romawi di bawah pemerintahan Hadrian (berkuasa 117-38 M), di sebelah barat Anatolia, provinsi Asia (barat daya Turki) Provinsi Asia (ditandai merah) di dalam wilayah Kekaisaran Romawi. Provinsi (Romawi) Asia atau Asiana (Yunani: Ἀσία atau Ἀσιανή), pada zaman Kekaisaran Bizantin disebut Frigia, adalah sebuah wilayah administratif yang ditambahkan ke dalam Republik Romawi pada masa akhirnya. Berbentuk provinsi senatorial yang diperinta...

 

2nd Supply Battalion2nd Supply Battalion insigniaCountryUnited StatesBranchUSMCPart ofCombat Logistics Regiment 252nd Marine Logistics GroupGarrison/HQMarine Corps Base Camp LejeuneMotto(s)Semper SustinareCommandersCurrentcommanderCol. Karin FitzgeraldMilitary unit The 2nd Supply Battalion is a battalion of the United States Marine Corps that specializes in distributing and warehousing military goods and equipment. They are based out of Marine Corps Base Camp Lejeune, North Carolina and...

2010 single by the Black KeysTighten UpSingle by the Black Keysfrom the album Brothers B-sideHowlin' for YouReleasedApril 23, 2010StudioThe Bunker (Brooklyn, New York)GenreAlternative rock[1]blues rockgarage rockLength3:34LabelNonesuchSongwriter(s)Dan AuerbachPatrick CarneyProducer(s)Danger MouseThe Black Keys singles chronology Same Old Thing (2008) Tighten Up (2010) Next Girl (2010) Professional ratingsReview scoresSourceRatingRolling Stone[2] Tighten Up is a song by Americ...

 

For the Detroit motel where several riots took place, see Algiers Motel incident. Hotel in Nevada, United StatesAlgiers HotelGeneral informationStatusDemolishedTypeHotelAddress2845 South Las Vegas BoulevardTown or cityWinchester, NevadaCountryUnited StatesCoordinates36°08′12″N 115°09′41″W / 36.136597°N 115.161416°W / 36.136597; -115.161416OpenedNovember 25, 1953ClosedAugust 31, 2004; 19 years ago (2004-08-31)Technical detailsFloor count2Ot...

 

Regional park in Perth, Western Australia Jandakot Regional ParkWestern AustraliaWandi Nature Reserve, part of Jandakot Regional ParkNearest town or cityCity of ArmadaleCity of CanningCity of CockburnCity of GosnellsCity of KwinanaShire of Serpentine-JarrahdaleCoordinates32°12′20″S 115°52′41″E / 32.20556°S 115.87806°E / -32.20556; 115.87806 (Jandakot Regional Park)Established1997Area2,362 ha (5,840 acres)Managing authoritiesDepartment of Biodiv...

Cette liste de ponts d'Angola a pour vocation de présenter une liste de ponts remarquables d'Angola, tant par leurs caractéristiques dimensionnelles, que par leur intérêt architectural ou historique. Elle est présentée sous forme de tableaux récapitulant les caractéristiques des différents ouvrages, et peut être triée selon les diverses entrées pour voir un type de pont particulier ou les ouvrages les plus récents par exemple. La seconde colonne donne la classification de l'ouvra...

 

Marco Carnesecchi Nazionalità  Italia Altezza 191 cm Peso 80 kg Calcio Ruolo Portiere Squadra  Atalanta CarrieraGiovanili 20??-2014 Sant'Ermete2014-2017 Cesena2017-2019 AtalantaSquadre di club1 2019-2020→  Trapani33 (-52)2020-2021 Atalanta0 (0)2021-2023→  Cremonese83 (-103)2023- Atalanta25 (-27)Nazionale 2018-2019 Italia U-1914 (-12)2019-2023 Italia U-2122 (-20)Palmarès  Europei di calcio Under-19 Argento Finlandia 2018 1 I due numeri i...

 

This is a list of diplomatic missions in Kazakhstan. At present, the capital, Astana, hosts 70 embassies. Map of diplomatic missions in Kazakhstan Diplomatic missions in Astana Embassies  Afghanistan  Algeria  Armenia  Austria  Azerbaijan  Belarus  Belgium  Brazil  Bulgaria  Canada  China  Croatia  Cuba  Czechia  Egypt  Estonia  Finland  France  Georgia  Germany  Greece  Holy See ...

Attic komast cup, Louvre Komast cup by the Falmouth Painter, c. 560 BC, Louvre The Komast cup (also Comast cup) is a cup shape at the beginning of the development of Attic drinking cups.[1] Komast cups were widespread especially in Ionia and Corinth. Like other vase painters of the time, the Attic painters were under strong influence from Corinthian vase painting.[2] The name is derived from the artists' preferred theme, the kōmos, a ritualistic drunken procession perfo...

 

تحتاج هذه المقالة إلى الاستشهاد بمصادر إضافية لتحسين وثوقيتها. فضلاً ساهم في تطوير هذه المقالة بإضافة استشهادات من مصادر موثوق بها. من الممكن التشكيك بالمعلومات غير المنسوبة إلى مصدر وإزالتها. بحاجة للاستشهاد بمعجم مطبوع بدلاً عن قاعدة بيانات معجمية على الإنترنت. التاريخ...

 

7th-century church council Council in Trullo redirects here. For the earlier council held in the same place, see Third Council of Constantinople. Quinisext CouncilA 16th-century Russian depiction of the councilDate692Accepted byEastern OrthodoxyPrevious councilThird Council of ConstantinopleNext councilSecond Council of NicaeaConvoked byEmperor Justinian IIPresidentJustinian IITopicsdisciplineDocuments and statementsbasis for Eastern Orthodox canon lawChronological list of ecum...

Method of fishing by hand Trout tickling is the art of rubbing the underbelly of a trout with fingers.[1] If done properly, the trout will go into a trance after a minute or so, and can then easily be retrieved and thrown onto the nearest bit of dry land.[2] History Trout tickling has been practiced for many centuries. It is mentioned in Shakespeare's comedy Twelfth Night, where it is used as a metaphor for bamboozlement by Olivia's servant Maria, who is about to play a vengef...

 

Highest academic official at Imperial College London The president of Imperial College London is the highest academic official of Imperial College London.[1] The president, formerly known as the rector, is the chief executive, elected by the council of the college and chairman of the senate.[2] The position is currently held by Hugh Brady, who succeeded Alice Gast in August 2022. In 2012 the responsibilities were separated into two posts, the president & rector whose duty ...

 

American cinematographer This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Russell Harlan – news · newspapers · books · scholar · JSTOR (December 2009) (Learn how and when to remove this message) Russell Harlan (standing), unknown, William C. McGann (director), Richard Dix, Frances Gifford, and Preston Foster ...

Apple SIM là mô-đun nhận dạng thuê bao độc quyền (SIM) do Apple Inc. sản xuất. Nó được bao gồm trong các phiên bản kích hoạt di độngApple SIMNhà phát triểnApple Inc.LoạiSIM (điện thoại)Trang webwww.apple.com/vn/ipad/cellular/của iPad Air 2, iPad Mini 3, iPad Mini 4, iPad Mini 5 và máy tính bảng iPad Pro và Apple Watch Series 3 và sau đó trong Cửa hàng bán lẻ của Apple tại Úc, Canada, Pháp, Đức, Hồng Kông, Ấn Độ, Ý...

 

Honorific style His Excellency and Her Excellency redirect here. For other uses, see His Excellency (disambiguation). Their Excellencies the Lords Justices of England, for the administration of the Government during the absence of the King by Robert White. Excellency is an honorific style given to certain high-level officers of a sovereign state, officials of an international organization, or members of an aristocracy. Once entitled to the title Excellency, the holder usually retains the righ...