Reciprocals of primes

The reciprocals of prime numbers have been of interest to mathematicians for various reasons. They do not have a finite sum, as Leonhard Euler proved in 1737.

Like rational numbers, the reciprocals of primes have repeating decimal representations. In his later years, George Salmon (1819–1904) concerned himself with the repeating periods of these decimal representations of reciprocals of primes.[1]

Contemporaneously, William Shanks (1812–1882) calculated numerous reciprocals of primes and their repeating periods, and published two papers "On Periods in the Reciprocals of Primes" in 1873[2] and 1874.[3] In 1874 he also published a table of primes, and the periods of their reciprocals, up to 20,000 (with help from and "communicated by the Rev. George Salmon"), and pointed out the errors in previous tables by three other authors.[4]

The last part of Shanks's 1874 table of primes and their repeating periods. In the top row, 6952 should be 6592 (the error is easy to find, since the period for a prime p must divide p − 1). In his report extending the table to 30,000 in the same year, Shanks did not report this error, but reported that in the same column, opposite 19841, the 1984 should be 64. *Another error which may have been corrected since his work was published is opposite 19423, the reciprocal repeats every 6474 digits, not every 3237.

Rules for calculating the periods of repeating decimals from rational fractions were given by James Whitbread Lee Glaisher in 1878.[5] For a prime p, the period of its reciprocal divides p − 1.[6]

The sequence of recurrence periods of the reciprocal primes (sequence A002371 in the OEIS) appears in the 1973 Handbook of Integer Sequences.

List of reciprocals of primes

Prime
(p)
Period
length
Reciprocal
(1/p)
2 0 0.5
3 † 1 0.3
5 0 0.2
7 * 6 0.142857
11 † 2 0.09
13 6 0.076923
17 * 16 0.0588235294117647
19 * 18 0.052631578947368421
23 * 22 0.0434782608695652173913
29 * 28 0.0344827586206896551724137931
31 15 0.032258064516129
37 † 3 0.027
41 5 0.02439
43 21 0.023255813953488372093
47 * 46 0.0212765957446808510638297872340425531914893617
53 13 0.0188679245283
59 * 58 0.0169491525423728813559322033898305084745762711864406779661
61 * 60 0.016393442622950819672131147540983606557377049180327868852459
67 33 0.014925373134328358208955223880597
71 35 0.01408450704225352112676056338028169
73 8 0.01369863
79 13 0.0126582278481
83 41 0.01204819277108433734939759036144578313253
89 44 0.01123595505617977528089887640449438202247191
97 * 96 0.010309278350515463917525773195876288659793814432989690721649484536082474226804123711340206185567
101 † 4 0.0099
103 34 0.0097087378640776699029126213592233
107 53 0.00934579439252336448598130841121495327102803738317757
109 * 108 0.009174311926605504587155963302752293577981651376146788990825688073394495412844036697247706422018348623853211
113 * 112 0.0088495575221238938053097345132743362831858407079646017699115044247787610619469026548672566371681415929203539823
127 42 0.007874015748031496062992125984251968503937

* Full reptend primes are italicised.
Unique primes are highlighted.

Full reptend primes

A full reptend prime, full repetend prime, proper prime[7]: 166  or long prime in base b is an odd prime number p such that the Fermat quotient

(where p does not divide b) gives a cyclic number with p − 1 digits. Therefore, the base b expansion of repeats the digits of the corresponding cyclic number infinitely.

Unique primes

A prime p (where p ≠ 2, 5 when working in base 10) is called unique if there is no other prime q such that the period length of the decimal expansion of its reciprocal, 1/p, is equal to the period length of the reciprocal of q, 1/q.[8] For example, 3 is the only prime with period 1, 11 is the only prime with period 2, 37 is the only prime with period 3, 101 is the only prime with period 4, so they are unique primes. The next larger unique prime is 9091 with period 10, though the next larger period is 9 (its prime being 333667). Unique primes were described by Samuel Yates in 1980.[9] A prime number p is unique if and only if there exists an n such that

is a power of p, where denotes the th cyclotomic polynomial evaluated at . The value of n is then the period of the decimal expansion of 1/p.[10]

At present, more than fifty decimal unique primes or probable primes are known. However, there are only twenty-three unique primes below 10100.

The decimal unique primes are

3, 11, 37, 101, 9091, 9901, 333667, 909091, ... (sequence A040017 in the OEIS).

References

  1. ^ "Obituary Notices – George Salmon". Proceedings of the London Mathematical Society. Second Series. 1: xxii–xxviii. 1904. Retrieved 27 March 2022. ...there was one branch of calculation which had a great fascination for him. It was the determination of the number of figures in the recurring periods in the reciprocals of prime numbers.
  2. ^ Shanks, William (1873). "On Periods in the Reciprocals of Primes". The Messenger of Mathematics. II: 41–43. Retrieved 27 March 2022.
  3. ^ Shanks, William (1874). "On Periods in the Reciprocals of Primes". The Messenger of Mathematics. III: 52–55. Retrieved 27 March 2022.
  4. ^ Shanks, William (1874). "On the Number of Figures in the Period of the Reciprocal of Every Prime Number Below 20,000". Proceedings of the Royal Society of London. 22: 200–210. Retrieved 27 March 2022.
  5. ^ Glaisher, J. W. L. (1878). "On circulating decimals with special reference to Henry Goodwin's 'Table of circles' and 'Tabular series of decimal quotients'". Proceedings of the Cambridge Philosophical Society: Mathematical and physical sciences. 3 (V): 185–206. Retrieved 27 March 2022.
  6. ^ Cook, John D. "Reciprocals of primes". johndcook.com. Retrieved 6 April 2022.
  7. ^ Dickson, Leonard E., 1952, History of the Theory of Numbers, Volume 1, Chelsea Public. Co.
  8. ^ Caldwell, Chris. "Unique prime". The Prime Pages. Retrieved 11 April 2014.
  9. ^ Yates, Samuel (1980). "Periods of unique primes". Math. Mag. 53: 314. Zbl 0445.10009.
  10. ^ "Generalized Unique". Prime Pages. Retrieved 9 December 2023.

Read other articles:

Kiss Sixth SensePoster promosiHangul키스 식스 센스 Alih Aksara yang DisempurnakanKiseu Sikseu Senseu PembuatDisney+BerdasarkanKiss Sixth Senseoleh Gatnyeo (갓녀)Ditulis olehJeon Yu-riSutradaraNam Ki-HoonPemeranSeo Ji-hyeYoon Kye-sangKim Ji-seokLee Joo-yeonNegara asalKorea SelatanBahasa asliKoreaProduksiRumah produksiArc MediaDistributorDisney+Rilis asliJaringanDisney+Format audioDolby DigitalRilis25 Mei 2022 (2022-05-25) Kiss Sixth Sense (Hangul: 키스 식스 센스...

 

Peta lokasi Ames di Iowa. Ames (pengucapan bahasa Inggris: /eɪmz/) adalah sebuah kota yang terletak di bagian tengah kabupaten Story, Iowa, Amerika Serikat. Letaknya sekitar 48 km sebelah utara Des Moines, dan mempunyai populasi lebih dari 58.965 jiwa per 2010.[1] Ames merupakan pusat dari Iowa State University of Science and Technology (ISU), sebuah badan riset umum berlandaskan pertanian, desai, mesin, dan obat-obat hewan.[2] Referensi ^ http://www2.census.gov/geo/ua/u...

 

First Mongolian spacecraft MazaalaiMazaalai among three other deploying CubeSat in Birds-1 mission, the top-most of the batch.NamesBird MMNUMSAT-1Mission typeTechnology demonstrationEarth observationOperatorNational University of MongoliaCOSPAR ID1998-067MW SATCAT no.42822Mission duration24 months (planned)22 months, 3 days (achieved) Spacecraft propertiesSpacecraft type1U CubeSatManufacturerNational University of MongoliaLaunch mass1 kgDimensions10 x 10 x 10 cmPowerwatts Start of m...

Charlemagne menobatkan Ludwig yang Saleh. Vita Hludovici atau Vita Hludovici Imperatoris (Kehidupan Ludwig atau Kehidupan Kaisar Ludwig) merupakan sebuah biografi anonim Ludwig yang Saleh, Kaisar Romawi Suci dan Raja Franka dari tahun 814 hingga 840 M. Penulis Karya ini ditulis dalam bahasa Latin pada atau segera setelah 840 M oleh penulis anonim yang secara konvensional disebut Astronomus, Astronomer atau kadang-kadang Astronomer Limousin. Hal ini disebabkan oleh banyak komentar rinci tentan...

 

1989 film directed by Lucio Fulci This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Demonia film – news · newspapers · books · scholar · JSTOR (September 2014) (Learn how and when to remove this template message) DemoniaDirected byLucio FulciScreenplay by Lucio Fulci Piero Regnoli[1] Story by Luci...

 

Lok Sabha constituency in Bihar, India Arrah Lok Sabha constituencyLok Sabha constituencyConstituency detailsCountryIndiaRegionEast IndiaStateBiharAssembly constituenciesAgiaon (195) (SC)Arrah (194)Barhara (193)Jagdishpur (197)Sandesh (192)Shahpur (198)Tarari (196)Established1957 (Shahabad) 1977 (Arrah)ReservationNoneMember of Parliament17th Lok SabhaIncumbent R. K. Singh PartyBharatiya Janata PartyElected year2019Preceded byMeena Singh Arrah Lok Sabha constituency (formerly Shahabad) is one ...

This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Federation of State Medical Boards – news · newspapers · books · scholar · JSTOR (June 2017) (Learn how and when to remove this message) Federation of State Medical BoardsFormation1912TypeProfessional associationHeadquartersWashington, DCLocationUnited StatesOfficial language EnglishPresident and CEOHumayu...

 

Steam-powered schooner on which Shackleton died For the ship attacked by Somali pirates, see SY Quest incident. Quest History Name Foca I (1917–21) Quest RYS (1921–23) Quest (1923–40) HMS Quest (1940–46) Quest (1946–62) Owner A Ingebrigtsen (1917–21) E Shackleton (1921–23) W G Oliffe (1923–24) Schjelderups Sælfangstrederi AS (1924–39) Skips-AS Quest (1939–40) Nortraship (1940–62) Operator A Ingebrigtsen (1917–21) E Shackleton (1921–23) W G Oliffe (1923–24) T Schje...

 

UFC mixed martial arts event in 2014 UFC Fight Night: MacDonald vs. SaffiedineThe poster for UFC Fight Night: MacDonald vs. SaffiedineInformationPromotionUltimate Fighting ChampionshipDateOctober 4, 2014 (2014-10-04)VenueScotiabank CentreCityHalifax, Nova Scotia, CanadaAttendance10,782[1]Total gate$926,000[1]Event chronology UFC Fight Night: Nelson vs. Story UFC Fight Night: MacDonald vs. Saffiedine UFC 179: Aldo vs. Mendes 2 UFC Fight Night: MacDonald vs. Saffi...

American artist (1907–1977) This article is about the American painter. For other people of the same name, see Charles Alston (disambiguation). Charles AlstonCharles Alston in 1939BornCharles Henry Alston(1907-11-28)November 28, 1907Charlotte, North Carolina, U.S.DiedApril 27, 1977(1977-04-27) (aged 69)New York City, U.S.EducationColumbia University, Teachers CollegeKnown forMuralism, painting, illustration, sculptureMovementAbstract expressionismSpouseMyra Adele LoganPatron(s)Lem...

 

2013–2015 American television series Granite FlatsCast and logo for season 1Written byJohn Christian PlummerDirected byScott SwoffordBrian McNamaraBlair TreuStarring Jonathan Morgan Heit Annie Tedesco Richard Gunn Charlie Plummer Malia Tyler David Naughton Peter Murnik Ethan Ross Wills Tom Wright Opening themeThe End of the WorldCountry of originUnited StatesOriginal languageEnglishNo. of seasons3No. of episodes24ProductionProducersDerek Marquis Jeff T. Miller Scott Swofford Terri Pappas Ja...

 

Військово-музичне управління Збройних сил України Тип військове формуванняЗасновано 1992Країна  Україна Емблема управління Військово-музичне управління Збройних сил України — структурний підрозділ Генерального штабу Збройних сил України призначений для планува...

Unincorporated community in Montana, U.S. U.S. Customs Service Port of Roosville, Main Port Building, U.S. Highway 93 Roosville is an unincorporated community[1] and United States Port of Entry on the Canada–United States border[2] in Lincoln County, Montana, United States, at the terminus of US Highway 93. The locality on the Canadian side of the border is also named Roosville and is the southern terminus of British Columbia provincial highway 93. References ^ U.S. Geologic...

 

تصوير زيتيمعلومات عامةصنف فرعي من رسم تسبب في oil painting (en) يمارسها oil painter (en) تعديل - تعديل مصدري - تعديل ويكي بيانات لوحة الألوان. الرسوم الزيتية من الفنون التشكيلية وقد عُرف هذا الفن منذ القدم.[1][2][3] سطح الرسم هي السطح الذي يرسم عليه الفنان بخامة الالوان الزيتيةوه�...

 

Term applied to three hybrid genres of the Western This article is about the narrative term. For the video game, see Weird West (video game). Part of a series onWesterns Media Film Television Literature Visual arts Dime novels Comics Wild West shows Subgenres Acid Western Australian Western Contemporary Western Dacoit Western Epic Western Fantasy Western Florida Western Gothic Western Horror Western Northern Ostern Revisionist Western Science fiction Western Singing cowboy Space Western Spagh...

Bilateral relationsQatar–United States relations Qatar United States Qatar and the United States are strategic allies. Qatar has been designated a major non-NATO ally by the United States.[1] History The United States formed diplomatic relations with Qatar on 19 March 1972, when diplomat William Stoltzfus met with Qatari government officials and submitted his credentials.[2] Bilateral relations between the two countries have expanded since the opening of the U.S. embassy in...

 

Inje redirects here. For the Serbian electro-pop band, see Inje (band). For the South Korean university, see Inje University. County in Gwandong, South KoreaInje 인제군CountyKorean transcription(s) • Hangul인제군 • Hanja麟蹄郡 • Revised RomanizationInje-gun • McCune-ReischauerInje-gunInje University Station FlagEmblem of InjeLocation in South KoreaCountry South KoreaRegionGwandongAdministrative divisions1 eup, 5 myeonArea ...

 

American prelate The Most ReverendEdward Daniel HowardArchbishop of PortlandSeePortlandInstalledAugust 26, 1926Term endedDecember 9, 1966PredecessorAlexander ChristieSuccessorRobert Joseph DwyerOther post(s)Auxiliary Bishop of Davenport (1924–26)OrdersOrdinationJune 12, 1906ConsecrationApril 8, 1924Personal detailsBorn(1877-11-05)November 5, 1877Cresco, IowaDiedJanuary 2, 1983(1983-01-02) (aged 105)Beaverton, OregonDenominationRoman Catholic Church Edward Daniel Howard (November 5, 187...

منفذ تسلسلي نوع تسلسيمواصفات عامةعدد الدبابيس 8 دبابيس (RS-422) 9 دبابيس (DB-9) 25 دبوس (RS-232) المنفذ التسلسلي (بالإنجليزية: Serial ports)‏ هو واجهة تخاطب فيزيائية تسلسلية تقوم بنقل المعلومات بين الحاسوب والطرفيات المربوطة إليه عن طريقها على مستوى بت واحد في وحدة الزمن على الرغم من أن بعض...

 

Prison in Wisconsin Redgranite Correctional InstitutionRedgranite Correctional Institution pictured in July 2024LocationRedgranite, WisconsinStatusOperationalSecurity classMediumCapacity990 males (operating)Population1,013 males (as of FY 2023)OpenedJanuary 8, 2001Managed byWisconsin Department of CorrectionsDivision of Adult InstitutionsWardenMichael Gierach The Redgranite Correctional Institution is a medium security adult male correctional institution located in Redgranite, Wisconsin, ...