Largest known prime number
The largest known prime number is 2136,279,841 − 1 , a number which has 41,024,320 digits when written in the decimal system. It was found on October 12, 2024, on a cloud-based virtual machine volunteered by Luke Durant to the Great Internet Mersenne Prime Search (GIMPS).[ 1]
A plot of the number of digits in the largest known prime by year, since the electronic computer. The vertical scale is logarithmic .
A prime number is a natural number greater than 1 with no divisors other than 1 and itself. According to Euclid's theorem there are infinitely many prime numbers, so there is no largest prime.
Many of the largest known primes are Mersenne primes , numbers that are one less than a power of two , because they can utilize a specialized primality test that is faster than the general one. As of October 2024[update] , the seven largest known primes are Mersenne primes.[ 2] The last eighteen record primes were Mersenne primes.[ 3] [ 4] The binary representation of any Mersenne prime is composed of all ones , since the binary form of 2k − 1 is simply k ones.[ 5]
Finding larger prime numbers is sometimes presented as a means to stronger encryption , but this is not the case.[ 6] [ 7]
Current record
The record is currently held by 2136,279,841 − 1 with 41,024,320 digits, found by GIMPS on October 12, 2024.[ 1] The first and last 120 digits of its value are:[ 8]
881694327503833265553939100378117358971207354509066041067156376412422630694756841441725990347723283108837509739959776874 ...
(41,024,080 digits skipped)
... 852806517931459412567957568284228288124096109707961148305849349766085764170715060409404509622104665555076706219486871551
As of October 2024[update] , the previously discovered prime M82589933 , having 24,862,048 digits, held the record for almost 6 years, longer than any other prime since M19937 (which held the record for 7 years from 1971 to 1978).[citation needed ]
Prizes
There are several prizes offered by the Electronic Frontier Foundation (EFF) for record primes.[ 9] A prime with one million digits was found in 1999, earning the discoverer a US$50,000 prize.[ 10] In 2008, a ten-million-digit prime won a US$100,000 prize and a Cooperative Computing Award from the EFF.[ 9] Time called this prime the 29th top invention of 2008.[ 11]
Both of these primes were discovered through the Great Internet Mersenne Prime Search (GIMPS), which coordinates long-range search efforts among tens of thousands of computers and thousands of volunteers. The $50,000 prize went to the discoverer and the $100,000 prize went to GIMPS. GIMPS will split the US$150,000 prize for the first prime of over 100 million digits with the winning participant. A further US$250,000 prize is offered for the first prime with at least one billion digits.[ 9]
GIMPS also offers a US$3,000 research discovery award for participants who discover a new Mersenne prime of less than 100 million digits.[ 12]
History
Commemorative postmark used by the UIUC Math Department after proving that M11213 is prime
The following table lists the progression of the largest known prime number in ascending order.[ 3] Here Mp = 2p − 1 is the Mersenne number with exponent p , where p is a prime number. The longest record-holder known was M19 = 524,287 , which was the largest known prime for 144 years. No records are known prior to 1456.[citation needed ]
GIMPS volunteers found the sixteen latest records, all of them Mersenne primes . They were found on ordinary personal computers until the most recent one, found by ex-Nvidia employee Luke Durant using a network of thousands of dedicated graphics processing units (GPUs).[ 1] Durant spent almost exactly one year and approximately US$2 million of his personal money on the hunt.[ 13] This achievement marks the first time a Mersenne prime has been discovered using GPUs instead of central processing units (CPUs), ushering in a new era in prime number searches.[ 14] [ 15]
Number
Digits
First 120 digits
Last 120 digits
Year found
Discoverer
M13
4
8191
8191
1456
Anonymous
M17
6
131071
131071
1588
Pietro Cataldi
M19
6
524287
524287
1588
Pietro Cataldi
2
32
+
1
641
{\displaystyle {\tfrac {2^{32}+1}{641}}}
7
6700417
6700417
1732
Leonhard Euler ? Euler did not explicitly publish the primality of 6,700,417, but the techniques he had used to factorise 232 + 1 meant that he had already done most of the work needed to prove this, and some experts believe he knew of it.[ 16]
M31
10
2147483647
2147483647
1772
Leonhard Euler
10
18
+
1
1000001
{\displaystyle {\tfrac {10^{18}+1}{1000001}}}
12
999999000001
999999000001
1851
Included (but question-marked) in a list of primes by Looff. Given his uncertainty, some do not include this as a record.
2
64
+
1
274177
{\displaystyle {\tfrac {2^{64}+1}{274177}}}
14
67280421310721
67280421310721
1855
Thomas Clausen (but no proof was provided).
M127
39
17014118346046923173 1687303715884105727
1701411834604692317 31687303715884105727
1876
Édouard Lucas
2
148
+
1
17
{\displaystyle {\tfrac {2^{148}+1}{17}}}
44
20988936657440586486 15126425661022259386 3921
2098 89366574405864861512 64256610222593863921
1951
Aimé Ferrier with a mechanical calculator; the largest record not set by computer.
180×(M127 )2 +1
79
52106440156792287940 60694325390955853335 89848390805645835218 3851018372555735221
5210644015679228794 06069432539095585333 58984839080564583521 83851018372555735221
1951
J. C. P. Miller & D. J. Wheeler [ 17] Using Cambridge's EDSAC computer
M521
157
68647976601306097149 81900799081393217269 43530014330540939446 34591855431833976560 52122559640661454554 97729631139148085803
26943530014330540939 44634591855431833976 56052122559640661454 55497729631139148085 80371219879997166438 12574028291115057151
1952
Raphael M. Robinson
M607
183
53113799281676709868 95882065524686273295 93117727031923199444 13820040355986085224 27391625022652292856 68889329486246501015
20040355986085224273 91625022652292856688 89329486246501015346 57933765270723940951 99787665873519438312 70835393219031728127
1952
Raphael M. Robinson
M1279
386
10407932194664399081 92524032736408553861 52622472667048053191 12350403608059673360 29801223944173232418 48424216139542810077
82853841658502825560 46662248318909188018 47068222203140521026 69843548873295802887 80508697361869007147 20710555703168729087
1952
Raphael M. Robinson
M2203
664
14759799152141802350 84898622737381736312 06614533316977514777 12164785702978780789 49377407337049389289 38274850753149648047
51945258754287534997 65585726702296339625 75212637477897785501 55264652260998886991 40135404838098656812 50419497686697771007
1952
Raphael M. Robinson
M2281
687
44608755718375842957 11517064021018098862 08632412859901111991 21996340468579282047 33691125452690039890 26153245931124316702
95491713975879606122 38033935373810346664 94402951052059047968 69325538864793044092 51041868170096401717 64133172418132836351
1952
Raphael M. Robinson
M3217
969
25911708601320262777 62467679224415309418 18887553125427303974 92316187401926658636 20862012095168004834 06550695241733194177
59459944433523118828 01236604062624686092 12150349937584782292 23714433962885848593 82157388212323936870 46160677362909315071
1957
Hans Riesel
M4423
1,332
28554254222827961390 15635661021640083261 64238644702889199247 45660228440039060065 38759545715055398432 39754513915896150297
82106760176875097786 61004600146021384084 48021225053689054793 74200309572209673295 47507217181155318713 10231057902608580607
1961
Alexander Hurwitz
M9689
2,917
47822027880546120295 28392986600059097414 97172402236500851334 51099183789509426629 70278927686112707894 58682472098152425631
96502507081973046642 28261056975105642897 98951182192885976352 22905389894873761464 21399109115358645058 18992696826225754111
1963
Donald B. Gillies
M9941
2,993
34608828249085121524 29603957674133167226 28668900238547790489 28344500622080983411 44643643755441537075 33664486747635050186
85925083476189478888 95525278984009881962 00014868575640233136 50914562812719135485 82750839078914699790 19426224883789463551
1963
Donald B. Gillies
M11213
3,376
28141120136973731333 93152975842584191818 66238201360078789241 93493455151766822763 13810715094745633257 07419878930853507153
87566914032072497856 85867185275866024396 02335283513944980064 32703027810422414497 18836805416897847962 67391476087696392191
1963
Donald B. Gillies
M19937
6,002
43154247973881626480 55235516337919839053 93504322671150516525 05414033306801376580 91130451362931858466 55452699382576488353
60727895549548774214 07535706212171982521 92978869786916734625 61843017545490386411 15854295045699209056 36741539030968041471
1971
Bryant Tuckerman
M21701
6,533
44867916611904333479 49514103615917787272 09023729388613010364 80447512785609158053 63716201839592018310 86891496139730355336
33369896693354436162 93913110417309565016 94662754558875644345 19126927960069355180 92719564502642940928 57410828353511882751
1978
Laura A. Nickel and Landon Curt Noll [ 18]
M23209
6,987
40287411577898877818 18733290715917677224 38506891622420041029 96357869459524088740 08676398614614665371 03833299413586592359
49990785611757500951 57465578625397647565 74427752110896827606 78602528203915287605 50508545118172938900 36743355523779264511
1979
Landon Curt Noll[ 18]
M44497
13,395
85450982430363380319 33007053184030365099 01591304021058343269 25828229006478216763 58562005000144576458 61481315295253223674
19107442963978359909 48993204100398635759 46472558059877105808 94247177392297739634 54976377895623405368 44867686961011228671
1979
David Slowinski and Harry L. Nelson [ 18]
M86243
25,962
53692799550275632152 23382779929453006110 20994042124005915678 63944335346298210347 98964395551413140596 01329696868637207994
57351862519228939958 84693761059056977054 15089600178032945914 35320137691545632232 02509608679061957196 99857021709433438207
1982
David Slowinski[ 18]
M132049
39,751
51274027626932072381 27857636203402218800 46586227069926831240 38418582312743056203 61077749499092908732 12555709320045159618
89256188390637660219 36832367367308227116 78956149432532644153 24079640048510932988 33786316447035663398 52138578455730061311
1983
David Slowinski[ 18]
M216091
65,050
74609310306466134368 73395794005114895402 28754084977328805113 30497779366272527096 87806643956351409557 30008364494154882757
41796441616213691597 66435268814054587246 91315195450691201831 18538411805217750684 69327867645141118776 91336204103815528447
1985
David Slowinski[ 18]
391581×2216193 −1
65,087
14814063237640662751 89896116681502152616 14869061837067878963 23169460093384999355 40035564748752481896 29946106929509682950
82819868449333023401 04392759176586303336 22389718952919899041 01638046268529515895 76118449880787230436 89626791836387377151
1989
A group, "Amdahl Six": John Brown, Landon Curt Noll , B. K. Parady, Gene Ward Smith, Joel F. Smith, Sergio E. Zarantonello.[ 19] [ 20] Largest non-Mersenne prime that was the largest known prime when it was discovered.
M756839
227,832
17413590682008709732 51635992459033278907 79363690507030974654 73553838272156206625 76319147974364224616 10635130071368293660
19619724789014565809 44396409267168409183 49113692649241768590 51134272012692706848 76804040558133428809 02603793328544677887
1992
David Slowinski and Paul Gage [ 18]
M859433
258,716
12949812560420764966 65334852555620733841 62019917416569370190 66267567814724084952 96919893191078354681 55567280151644798137
70366138430104674404 17291687756716831654 19536906002518061544 66211087607689521384 87432526245965721589 02414267243500142591
1994
David Slowinski and Paul Gage[ 18]
M1257787
378,632
41224577362142867472 53232184669789600527 87185654659469380413 20489580405544505611 40313191552792105979 05669363277683158359
92352317328348412624 08558666851703702032 47995651850069878600 72644421009952433369 54631641051358552671 31257188976089366527
1996
David Slowinski and Paul Gage[ 18]
M1398269
420,921
81471756441257307514 26772643891354260153 13783085022271032114 51048469938030899616 08340980239948586278 86398792156198534051
70112944662406744358 62878919205295726467 35633955407734562739 68427460950363262807 77790674776834625319 85532025868451315711
1996
GIMPS , Joel Armengaud
M2976221
895,932
62334007624857864988 60414411708927450502 70498680527705762010 44980837228500531612 87552386408711765558 35347026816848251160
12689188858968205493 08475288306533381326 50949313652525946734 18989311375605582078 15564860085353060451 76506256743729201151
1997
GIMPS, Gordon Spence
M3021377
909,526
12741168303009336743 35542151767349261473 65409710390533367899 30486889243847834725 96446989025955854374 97756265138125839679
47478189918377204959 69880392336860732039 11214513449538158982 93606342963753971823 36558874582102617702 25422631973024694271
1998
GIMPS, Roland Clarkson
M6972593
2,098,960
43707574412708137883 33232912069460708676 24770574851606631018 13181519232482250706 53865555856672485830 59003027082699320939
73675389080631004085 08543235704913317476 87718276359853562553 41815592459312082762 45050174988400346151 35366526142924193791
1999
GIMPS, Nayan Hajratwala
M13466917
4,053,946
92494773800670132224 77583825476640519253 54401079958299021030 93608029565658055961 00476131215557305846 49024542650476541902
22828849378011781756 76448390574570798287 48568541687729337577 30752297148385814257 76644015462093334911 30073855470256259071
2001
GIMPS, Michael Cameron
M20996011
6,320,430
12597689545033010502 04943095748243114559 93416085351835952254 67012565498768908351 56022124009680282853 61325441271583233254
53656018582721448133 13954215503264848667 10969127787170820477 53340930097294847523 19834716766530781632 94714065762855682047
2003
GIMPS, Michael Shafer
M24036583
7,235,733
29941042940415717208 90489263404469382573 67722975418473547677 34860009764022110074 10262658651099123208 58493344156415212635
97367931835649549332 62413429503748554259 55207718464378183256 42314252685868703980 05560312691184129150 67436921882733969407
2004
GIMPS, Josh Findley
M25964951
7,816,230
12216463006127794810 77539640312884392673 61424223075246409537 66046996455809056861 56907748512690404182 46405468474387100505
82841605918218299877 77039869777444372767 13026360619053009303 03992810433168520775 07113305351596265166 98933257280577077247
2005
GIMPS, Martin Nowak
M30402457
9,152,052
31541647561884608093 63030286645451701265 19656262323870316323 71079513538744900693 46209438629475170296 63623614229944506869
29904518450254170958 38942393049606751896 53422547853529862010 43713583091577749950 02748822185508467086 11134297411652943871
2005
GIMPS, University of Central Missouri professors Curtis Cooper and Steven Boone
M32582657
9,808,358
12457502601536945540 08555015747995031227 95985151151842843670 47566259111523599739 73805597596066168459 39100419886882111308
72660495893732258251 20726126214431145356 41869584273577446330 45746582133321244573 71046356920000926590 11752880154053967871
2006
GIMPS, Curtis Cooper and Steven Boone
M43112609
12,978,189
31647026933025592314 34537239493375160541 06188475264644140304 17673281124749306936 86920431851216118378 56726816539985465097
15927979190839813022 33048240831190931959 98014562456347941202 19590092807967072944 79216164918874782657 80022181166697152511
2008
GIMPS, Edson Smith
M57885161
17,425,170
58188726623224644217 51002121132323686363 70852325421589325781 70448058449276170744 23164282813494233769 42979071335489886655
19696440089898189117 97158303938275980625 06665259086044516822 49493774541094283332 30952037056456587257 46141988071724285951
2013
GIMPS, Curtis Cooper
M74207281
22,338,618
30037641808460618205 29860983591660500568 75863030301484843941 69334554772321906799 42968936553007726883 20448214882399426727
71777401476291246211 36468794258014451073 93100212927181629335 93149423901821387921 76711649562871904986 87010073391086436351
2016
GIMPS, Curtis Cooper
M77232917
23,249,425
46733318335923109998 83355855611155212513 21102817714495798582 33859356792348052117 72074843110997402088 49621368090038049317
28537600451878605540 22233766729256792821 31965467343395945397 37047636927989462799 99396146592173711365 82730618069762179071
2017
GIMPS, Jonathan Pace
M82589933
24,862,048
14889444574204132554 78064584723979166030 26273992795324185271 28942521323936106447 53103099711321803371 74752834401423587560
06210755794795829753 15952088071926936765 21782184472526640076 91211435530831196948 76337664578236950740 37951210325217902591
2018
GIMPS, Patrick Laroche
M136279841
41,024,320
88169432750383326555 39391003781173589712 07354509066041067156 37641242263069475684 14417259903477232831 08837509739959776874
85280651793145941256 79575682842282881240 96109707961148305849 34976608576417071506 04094045096221046655 55076706219486871551
2024
GIMPS, Luke Durant
Twenty largest
A list of the 5,000 largest known primes is maintained by the PrimePages ,[ 21] of which the twenty largest are listed below.[ 22]
Rank
Number
Discovered
Digits
First 120 digits
Last 120 digits
Form
Ref
1
2136279841 − 1
2024-10-12
41,024,320
88169432750383326555 39391003781173589712 07354509066041067156 37641242263069475684 14417259903477232831 08837509739959776874
85280651793145941256 79575682842282881240 96109707961148305849 34976608576417071506 04094045096221046655 55076706219486871551
Mersenne
[ 1]
2
282589933 − 1
2018-12-07
24,862,048
14889444574204132554 78064584723979166030 26273992795324185271 28942521323936106447 53103099711321803371 74752834401423587560
06210755794795829753 15952088071926936765 21782184472526640076 91211435530831196948 76337664578236950740 37951210325217902591
Mersenne
[ 23]
3
277232917 − 1
2017-12-26
23,249,425
46733318335923109998 83355855611155212513 21102817714495798582 33859356792348052117 72074843110997402088 49621368090038049317
28537600451878605540 22233766729256792821 31965467343395945397 37047636927989462799 99396146592173711365 82730618069762179071
Mersenne
[ 24]
4
274207281 − 1
2016-01-07
22,338,618
30037641808460618205 29860983591660500568 75863030301484843941 69334554772321906799 42968936553007726883 20448214882399426727
71777401476291246211 36468794258014451073 93100212927181629335 93149423901821387921 76711649562871904986 87010073391086436351
Mersenne
[ 25]
5
257885161 − 1
2013-01-25
17,425,170
58188726623224644217 51002121132323686363 70852325421589325781 70448058449276170744 23164282813494233769 42979071335489886655
19696440089898189117 97158303938275980625 06665259086044516822 49493774541094283332 30952037056456587257 46141988071724285951
Mersenne
[ 26]
6
243112609 − 1
2008-08-23
12,978,189
31647026933025592314 34537239493375160541 06188475264644140304 17673281124749306936 86920431851216118378 56726816539985465097
15927979190839813022 33048240831190931959 98014562456347941202 19590092807967072944 79216164918874782657 80022181166697152511
Mersenne
[ 27]
7
242643801 − 1
2009-06-04
12,837,064
16987351645274162247 02898707511764713591 03325776997255365512 60020505373109218621 22599292756037678425 64017793851584510263
89793266835248591744 64060649185927134914 73117475647591955485 69867927456113537511 49133460978428956443 84101954765562314751
Mersenne
[ 28]
8
Φ3 (−5166931048576 )
2023-10-02
11,981,518
13402906796489222357 52246822000881801252 41118044574855268822 40787049468713337605 50197597945996229191 43176765531862533944
45102449632978070416 89341970562017911020 84113168162771694298 54415779073874568943 91416059782334617095 67178301964288000001
Generalized unique
[ 29]
9
Φ3 (−4658591048576 )
2023-05-31
11,887,192
17395442163066427324 04095947530927014429 23721230469791611973 13180378592661492867 58297267063261966785 92548252101237137788
85278914675748208502 55226473801289095503 68054401147310815004 88562918084974370698 95163405490252252372 63508838734878474241
Generalized unique
[ 30]
10
237156667 − 1
2008-09-06
11,185,272
20225440689097733553 41881522631568299468 46602582743182989551 05736054751457975812 50846721390095896345 30142096674488997709
14728787551899048539 16991622232001005966 66765048100145151363 48394299744493358135 21893866570487429610 21340265022308220927
Mersenne
[ 27]
11
232582657 − 1
2006-09-04
9,808,358
12457502601536945540 08555015747995031227 95985151151842843670 47566259111523599739 73805597596066168459 39100419886882111308
72660495893732258251 20726126214431145356 41869584273577446330 45746582133321244573 71046356920000926590 11752880154053967871
Mersenne
[ 31]
12
10223 × 231172165 + 1
2016-10-31
9,383,761
50625026920996343077 76282032439067604835 90666966114515920950 45640633412043430359 88815895056171116175 51873728066666193155
91892134918826938976 55779680218334368800 88050529917153697492 60915967379870147035 24878105802550394137 86610918915347316737
Proth
[ 32]
13
230402457 − 1
2005-12-15
9,152,052
31541647561884608093 63030286645451701265 19656262323870316323 71079513538744900693 46209438629475170296 63623614229944506869
29904518450254170958 38942393049606751896 53422547853529862010 43713583091577749950 02748822185508467086 11134297411652943871
Mersenne
[ 33]
14
4 × 511786358 + 1
2024-10-01
8,238,312
20156998396261662175 28359889367930265681 50456335975784718728 38256327105334814872 69679155318722963484 77606435567527820548
96709057831042893049 21132697813111998064 54292933825858091969 62763705692893998269 73241403038628050126 13534927368164062501
Generalized Proth
[ 34]
15
225964951 − 1
2005-02-18
7,816,230
12216463006127794810 77539640312884392673 61424223075246409537 66046996455809056861 56907748512690404182 46405468474387100505
82841605918218299877 77039869777444372767 13026360619053009303 03992810433168520775 07113305351596265166 98933257280577077247
Mersenne
[ 35]
16
69 × 224612729 − 1
2024-08-13
7,409,102
34913857494942645537 77528193541070245743 51335040706255350040 22702450446821700067 28827887453950698207 63928288182629713589
05695137582497488595 79121604235601653208 59352298128248331223 49160290220193535509 71657492602305174873 93807281434214268927
Riesel
[ 36]
17
224036583 − 1
2004-05-15
7,235,733
29941042940415717208 90489263404469382573 67722975418473547677 34860009764022110074 10262658651099123208 58493344156415212635
97367931835649549332 62413429503748554259 55207718464378183256 42314252685868703980 05560312691184129150 67436921882733969407
Mersenne
[ 37]
18
107347 × 223427517 − 1
2024-08-04
7,052,391
23535192646535179116 38946094063474658764 68924164622481357963 62977099077527159960 22049070416163357350 57403900382750381230
94089016871571688757 09838699794575028002 54586750694611329151 02052885568916854511 29696212376296097359 46366182881423785983
Riesel
[ 38]
19
3 × 222103376 − 1
2024-09-30
6,653,780
45557575201836797391 77924694750863521479 98028844478065239917 78652383915500660790 31585797936442894001 65356897435998223877
92420137288192690503 91322027063289672125 39967518049052118055 78416884567426783748 98800257594371326293 13552387699174801407
Thabit
[ 39]
20
19637361048576 + 1
2022-09-24
6,598,776
80651637087363405038 34361791568727797701 58073966695963388273 29711850319512278452 77262669720071754000 30028539895066510961
56553963377729301657 14959666076810377165 24885272924136913514 08208351325498302161 88609841060749286375 74080313425433460737
Generalized Fermat
[ 40]
See also
References
^ a b c d "GIMPS Project Discovers Largest Known Prime Number: 2136,279,841 -1" . Mersenne Research, Inc . 21 October 2024. Retrieved 21 October 2024 .
^ "The largest known primes – Database Search Output" . Prime Pages. Retrieved 19 March 2023 .
^ a b Caldwell, Chris. "The Largest Known Prime by Year: A Brief History" . Prime Pages. Retrieved 19 March 2023 .
^ The last non-Mersenne to be the largest known prime, was 391,581 ⋅ 2216,193 − 1 ; see also The Largest Known Prime by year: A Brief History originally by Caldwell.
^ "Perfect Numbers" . Penn State University . Retrieved 6 October 2019 . An interesting side note is about the binary representations of those numbers...
^ McKinnon, Mika (January 4, 2018). "This Is the Largest Known Prime Number Yet" . Smithsonian . Retrieved July 6, 2024 .
^ Johnston, Nathaniel (September 11, 2009). "No, Primes with Millions of Digits Are Not Useful for Cryptography" . njohnston.ca . Retrieved July 6, 2024 .
^ "List of known Mersenne prime numbers - PrimeNet" . www.mersenne.org . "41024320" link is to a zip file with the digits. Retrieved 2024-10-21 .
^ a b c "Record 12-Million-Digit Prime Number Nets $100,000 Prize" . Electronic Frontier Foundation . Electronic Frontier Foundation . October 14, 2009. Retrieved November 26, 2011 .
^ Electronic Frontier Foundation, Big Prime Nets Big Prize .
^ "Best Inventions of 2008 - 29. The 46th Mersenne Prime" . Time . Time Inc . October 29, 2008. Archived from the original on November 2, 2008. Retrieved January 17, 2012 .
^ "GIMPS by Mersenne Research, Inc" . mersenne.org . Retrieved 21 November 2022 .
^ Numberphile (2024-10-22). The Man Who Found the World's Biggest Prime - Numberphile . Retrieved 2024-11-28 – via YouTube.
^ Bragg, Julianna (2024-11-01). "World's largest known prime number found by former Nvidia programmer" . CNN . Retrieved 2024-11-28 .
^ McRae, Mike (2024-10-25). "Amateur Discovers The Largest Known Prime Number And It's Huge" . ScienceAlert . Retrieved 2024-11-28 .
^ Edward Sandifer, C. (19 November 2014). How Euler Did Even More . The Mathematical Association of America. ISBN 9780883855843 .
^ Miller, J. C. P. (1951). "Large Prime Numbers" . Nature . 168 (4280): 838. Bibcode :1951Natur.168..838M . doi :10.1038/168838b0 .
^ a b c d e f g h i Landon Curt Noll , Large Prime Number Found by SGI/Cray Supercomputer .
^ Brown, John; Noll, Landon Curt; Parady, B. K.; Smith, Joel F.; Zarantonello, Sergio E.; Smith, Gene Ward; Robinson, Raphael M.; Andrews, George E. (1990). "Letters to the Editor" . The American Mathematical Monthly . 97 (3): 214–215. doi :10.1080/00029890.1990.11995576 . JSTOR 2324686 .
^ Proof-code: Z , The Prime Pages .
^ "The Prime Database: The List of Largest Known Primes Home Page" . t5k.org/primes . Retrieved 19 March 2023 .
^ "The Top Twenty: Largest Known Primes" . Retrieved 19 March 2023 .
^ "GIMPS Project Discovers Largest Known Prime Number: 282,589,933 -1" . Mersenne Research, Inc . 21 December 2018. Retrieved 21 December 2018 .
^ "GIMPS Project Discovers Largest Known Prime Number: 277,232,917 -1" . mersenne.org . Great Internet Mersenne Prime Search . Retrieved 3 January 2018 .
^ "GIMPS Project Discovers Largest Known Prime Number: 274,207,281 -1" . mersenne.org . Great Internet Mersenne Prime Search . Retrieved 29 September 2017 .
^ "GIMPS Discovers 48th Mersenne Prime, 257,885,161 -1 is now the Largest Known Prime" . mersenne.org . Great Internet Mersenne Prime Search . 5 February 2013. Retrieved 29 September 2017 .
^ a b "GIMPS Discovers 45th and 46th Mersenne Primes, 243,112,609 -1 is now the Largest Known Prime" . mersenne.org . Great Internet Mersenne Prime Search . 15 September 2008. Retrieved 29 September 2017 .
^ "GIMPS Discovers 47th Mersenne Prime, 242,643,801 -1 is newest, but not the largest, known Mersenne Prime" . mersenne.org . Great Internet Mersenne Prime Search . 12 April 2009. Retrieved 29 September 2017 .
^ "PrimePage Primes: Phi(3, - 516693^1048576)" . t5k.org .
^ "PrimePage Primes: Phi(3, - 465859^1048576)" . t5k.org .
^ "GIMPS Discovers 44th Mersenne Prime, 232,582,657 -1 is now the Largest Known Prime" . mersenne.org . Great Internet Mersenne Prime Search . 11 September 2006. Retrieved 29 September 2017 .
^ "PrimeGrid's Seventeen or Bust Subproject" (PDF) . primegrid.com . PrimeGrid . Retrieved 30 September 2017 .
^ "GIMPS Discovers 43rd Mersenne Prime, 230,402,457 -1 is now the Largest Known Prime" . mersenne.org . Great Internet Mersenne Prime Search . 24 December 2005. Retrieved 29 September 2017 .
^ "4 × 511786358 + 1" . t5k.org . PrimePages . 1 October 2024. Retrieved 5 October 2024 .
^ "GIMPS Discovers 42nd Mersenne Prime, 225,964,951 -1 is now the Largest Known Prime" . mersenne.org . Great Internet Mersenne Prime Search . 27 February 2005. Retrieved 29 September 2017 .
^ "69 × 224612729 − 1" . t5k.org . PrimePages . 13 August 2024. Retrieved 29 August 2024 .
^ "GIMPS Discovers 41st Mersenne Prime, 224,036,583 -1 is now the Largest Known Prime" . mersenne.org . Great Internet Mersenne Prime Search . 28 May 2004. Retrieved 29 September 2017 .
^ "107347 × 223427517 − 1" . t5k.org . PrimePages . 4 August 2024. Retrieved 25 August 2024 .
^ "PrimeGrid's 321 Prime Search" (PDF) . primegrid.com .[dead link ]
^ "PrimeGrid's Generalized Fermat Prime Search" (PDF) . primegrid.com . PrimeGrid . Retrieved 7 October 2022 .
External links
By formula By integer sequence By property Base -dependentPatterns
k -tuples
Twin (p , p + 2 )
Triplet (p , p + 2 or p + 4, p + 6 )
Quadruplet (p , p + 2, p + 6, p + 8 )
Cousin (p , p + 4 )
Sexy (p , p + 6 )
Arithmetic progression (p + a·n , n = 0, 1, 2, 3, ... )
Balanced (consecutive p − n , p , p + n )
By size Complex numbers Composite numbers Related topics First 60 primes
Examples in numerical order Expression methods
Related articles (alphabetical order)