Semiprime

In mathematics, a semiprime is a natural number that is the product of exactly two prime numbers. The two primes in the product may equal each other, so the semiprimes include the squares of prime numbers. Because there are infinitely many prime numbers, there are also infinitely many semiprimes. Semiprimes are also called biprimes,[1] since they include two primes, or second numbers,[2] by analogy with how "prime" means "first".

Examples and variations

The semiprimes less than 100 are:

4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 34, 35, 38, 39, 46, 49, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, and 95 (sequence A001358 in the OEIS)

Semiprimes that are not square numbers are called discrete, distinct, or squarefree semiprimes:

6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, ... (sequence A006881 in the OEIS)

The semiprimes are the case of the -almost primes, numbers with exactly prime factors. However some sources use "semiprime" to refer to a larger set of numbers, the numbers with at most two prime factors (including unit (1), primes, and semiprimes).[3] These are:

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 49, ... (sequence A037143 in the OEIS)

Formula for number of semiprimes

A semiprime counting formula was discovered by E. Noel and G. Panos in 2005.[4] Let denote the number of semiprimes less than or equal to n. Then where is the prime-counting function and denotes the kth prime.[5]

Properties

Semiprime numbers have no composite numbers as factors other than themselves.[6] For example, the number 26 is semiprime and its only factors are 1, 2, 13, and 26, of which only 26 is composite.

For a squarefree semiprime (with ) the value of Euler's totient function (the number of positive integers less than or equal to that are relatively prime to ) takes the simple form This calculation is an important part of the application of semiprimes in the RSA cryptosystem.[7] For a square semiprime , the formula is again simple:[7]

Applications

The Arecibo message

Semiprimes are highly useful in the area of cryptography and number theory, most notably in public key cryptography, where they are used by RSA and pseudorandom number generators such as Blum Blum Shub. These methods rely on the fact that finding two large primes and multiplying them together (resulting in a semiprime) is computationally simple, whereas finding the original factors appears to be difficult. In the RSA Factoring Challenge, RSA Security offered prizes for the factoring of specific large semiprimes and several prizes were awarded. The original RSA Factoring Challenge was issued in 1991, and was replaced in 2001 by the New RSA Factoring Challenge, which was later withdrawn in 2007.[8]

In 1974 the Arecibo message was sent with a radio signal aimed at a star cluster. It consisted of binary digits intended to be interpreted as a bitmap image. The number was chosen because it is a semiprime and therefore can be arranged into a rectangular image in only two distinct ways (23 rows and 73 columns, or 73 rows and 23 columns).[9]

See also

References

  1. ^ Sloane, N. J. A. (ed.). "Sequence A001358". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  2. ^ Nowicki, Andrzej (2013-07-01), Second numbers in arithmetic progressions, arXiv:1306.6424
  3. ^ Stewart, Ian (2010). Professor Stewart's Cabinet of Mathematical Curiosities. Profile Books. p. 154. ISBN 9781847651280.
  4. ^ "Semiprime (Wolfram MathWorld)". Wolfram MathWorld. Retrieved 16 December 2024.
  5. ^ Ishmukhametov, Sh. T.; Sharifullina, F. F. (2014). "On distribution of semiprime numbers". Russian Mathematics. 58 (8): 43–48. doi:10.3103/S1066369X14080052. MR 3306238. S2CID 122410656.
  6. ^ French, John Homer (1889). Advanced Arithmetic for Secondary Schools. New York: Harper & Brothers. p. 53.
  7. ^ a b Cozzens, Margaret; Miller, Steven J. (2013). The Mathematics of Encryption: An Elementary Introduction. Mathematical World. Vol. 29. American Mathematical Society. p. 237. ISBN 9780821883211.
  8. ^ "The RSA Factoring Challenge is no longer active". RSA Laboratories. Archived from the original on 2013-07-27.
  9. ^ du Sautoy, Marcus (2011). The Number Mysteries: A Mathematical Odyssey through Everyday Life. St. Martin's Press. p. 19. ISBN 9780230120280.

Read other articles:

Firman Dwi Cahyono Komandan Pangkalan Udara IswahyudiPetahanaMulai menjabat 2 Oktober 2023 PendahuluWastumPenggantiPetahanaKepala Pusat Kerjasama Internasional TNIMasa jabatan29 Maret 2023 – 2 Oktober 2023 PendahuluBambang DarmawanPenggantiBenny Arfan Informasi pribadiLahir30 Maret 1974 (umur 49)Surabaya, Jawa TimurKebangsaanIndonesiaAlma mater1. SMA Taruna Nusantara (1993)2. Akademi Angkatan Udara (1996)Penghargaan sipil1. Lulusan Terbaik SMA Taruna Nusantara2. 2000 Jam T...

 

 

DidimaΔίδυμαReruntuhan Kuil Apollo di DidimaLokasi di TurkeyLokasiDidim, Provinsi Aydin, TurkiWilayahIoniaKoordinat37°23′06″N 27°15′23″E / 37.38500°N 27.25639°E / 37.38500; 27.25639Koordinat: 37°23′06″N 27°15′23″E / 37.38500°N 27.25639°E / 37.38500; 27.25639JenisTempat suciSejarahBudayaYunani, RomawiSatelit dariMiletusCatatan situsKondisiReruntuhanPemilikPublikAkses umumYesSitus webSitus Arkeologi Didima D...

 

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Cruiser tank – news · newspapers · books · scholar · JSTOR (June 2012) (Learn how and when to remove this template message) Tank Cruiser tank Crusader Mark I with auxiliary turretTypeTankPlace of originUnited KingdomService historyIn service1937...

1953 Dutch Grand Prix ← Previous raceNext race → Zandvoort original layoutRace detailsDate 7 June 1953Official name IV Grote Prijs van NederlandLocation Circuit Park Zandvoort, Zandvoort, NetherlandsCourse Permanent racing facilityCourse length 4.193 km (2.605 miles)Distance 90 laps, 377.370 km (234.488 miles)Weather Sunny, mild, dryPole positionDriver Alberto Ascari FerrariTime 1:51.1Fastest lapDriver Luigi Villoresi FerrariTime 1:52.8 on lap 59PodiumFirst Alberto Asc...

 

 

American politician (1929–2021) For the computer scientist, see William Clinger (computer scientist). Not to be confused with William Klinger. William ClingerChair of the House Oversight CommitteeIn officeJanuary 3, 1995 – January 3, 1997Preceded byJohn ConyersSucceeded byDan BurtonMember of theU.S. House of Representativesfrom PennsylvaniaIn officeJanuary 3, 1979 – January 3, 1997Preceded byJoseph AmmermanSucceeded byJohn PetersonConstituency23rd district (1979–1993...

 

 

Untuk kucing tiga warna, lihat Kucing belang tiga. Kucing milik Chelsea Clinton, Socks (1989-2009), tinggal di Gedung Putih pada tahun 1993-2001. Socks adalah kucing dua warna kelas rendah, atau disebut dengan kucing tuksedo. Kucing dua warna atau kucing belang adalah seekor kucing yang memiliki warna bulu putih yang dikombinasikan dengan warna lainnya, misalnya hitam atau tabi. Kucing dua warna memiliki berbagai macam pola bulu, mulai dari pola Van (kucing dua warna dengan satu warna (contoh...

This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (June 2021) (Learn how and when to remove this message) List of events ← 1970 1969 1968 1971 in India → 1972 1973 1974 Centuries: 18th 19th 20th 21st Decades: 1950s 1960s 1970s 1980s 1990s See also:List of years in IndiaTimeline of Indian history Events in the year 1971 in the Republic of India. Incum...

 

 

Map of the provinces and territories of Canada by HDI in 2021 This is a list of Canadian provinces and territories by their Human Development Index, which is a comparative measure of life expectancy, literacy, education, standard of living and overall well-being of the citizens in each province and territory. All Canadian provinces and territories have a very high (greater than 0.800) HDI. The 2021 estimate merges the province and territories of Prince Edward Island, Northwest Territories, N...

 

 

Football stadium in Almendralejo, Spain Estadio Francisco de la HeraFormer namesEstadio Francisco de la HeraLocationAlmendralejo, SpainCoordinates38°41′03.88″N 6°24′52.58″W / 38.6844111°N 6.4146056°W / 38.6844111; -6.4146056OwnerMunicipality of AlmendralejoCapacity11,580[1]Field size105 x 69 mSurfacegrassOpenedOld - October 12, 1951 (1951-10-12)New - September 9, 1996 (1996-09-09)TenantsCD Extremadura 1924 (2022–)Extr...

President of the United States in 1881 James Garfield redirects here. For other uses, see James Garfield (disambiguation). James A. GarfieldGarfield in 188120th President of the United StatesIn officeMarch 4, 1881 – September 19, 1881Vice PresidentChester A. ArthurPreceded byRutherford B. HayesSucceeded byChester A. ArthurMember of the U.S. House of Representativesfrom Ohio's 19th districtIn officeMarch 4, 1863 – November 8, 1880Preceded byAlbert G. Riddl...

 

 

Baltimore Ravens Musim saat iniDidirikan 1996Bermain di M&T Bank StadiumBaltimore, MarylandKantor pusat di Owings Mills, Maryland Baltimore Ravens logoLogoAfiliasi liga National Football League (1996–sekarang) American Football Conference (1996–sekarang) AFC Central (1996–2001) AFC North (2002–sekarang) Seragam saat iniWarna timPurple, Black, Metallic Gold, White        LaguThe Baltimore Fight Song [1]MaskotPoe (costumed mascot)Rise dan Conquer (liv...

 

 

Scorcio del mulino Meraviglia di San Vittore Olona I mulini ad acqua sul fiume Olona sono degli edifici destinati all'attività molinatoria che sono disseminati lungo le rive del fiume Olona. Conobbero il loro apice di sviluppo nel XVII secolo con la presenza, lungo le rive del fiume, di circa un centinaio di impianti molinatori[1]. In seguito, dal XVIII al XIX secolo, ci fu una fase di declino, che terminò appena dopo la seconda guerra mondiale, quando i mulini attivi ancora present...

  جمهورية الدومينيكان (بالإسبانية: República Dominicana)‏  جمهورية الدومينيكانعلم جمهورية الدومينيكان  جمهورية الدومينيكانشعار جمهورية الدومينيكان    الشعار الوطني(بالإسبانية: Dios, Patria, Libertad)‏  النشيد: نشيد جمهورية الدومينيكان الوطني  الأرض والسكان إحداثيات 18°48�...

 

 

  提示:此条目页的主题不是中国邮政。 中華郵政Chunghwa Post Co., Ltd.簡稱中華郵政、郵局SWIFT識別碼CHPYTWTP[1][2]金融代號700開設日期1896年3月20日​(128年前)​(1896-03-20)总部地址 中華民國106409 臺北市大安區金山南路2段55號代表人吳宏謀(董事長)[3]江瑞堂(總經理)[4]年營業額▼新臺幣2,128.58億元(2022年預估營收)息税前利润▲...

 

 

Site of Specific Scientific Interest in Wiltshire, England The old water meadows with the remains of brickwork and irrigation channels Lower Woodford Water Meadows (grid reference SU124347) is a 23.9 hectare biological Site of Special Scientific Interest in Wiltshire, notified in 1971. Sources Natural England citation sheet for the site (accessed 7 April 2022) External links Natural England website (SSSI information) vteBiological Sites of Special Scientific Interest in Wiltshire Acres Farm M...

Giuseppe FigliomeniNazionalità Italia Altezza190 cm Peso85 kg Calcio RuoloDifensore Termine carriera1 luglio 2023 CarrieraGiovanili 2005-2006 Crotone2006 Inter Squadre di club1 2006 Inter0 (0)2006-2009 Crotone19 (2)[1]2009-2010 Arezzo24 (2)[2]2010-2012 Varese12 (1)2012 Nocerina14 (1)2012-2013 Juve Stabia29 (0)2013-2014 Latina12 (1)2014-2015→  Vicenza6 (0)2015-2016 Latina13 (0)2016-2017 Trapani7 (0)2017-2018...

 

 

Flemish painter (c. 1604–1668) Frans LuycxSelf-PortraitBornbefore 17 April 1604Antwerp, Brabant, SpainDied1 May 1668(1668-05-01) (aged 63–64)Vienna, AustriaNationalityFlemish Frans Luycx or Frans Luyckx[1] (before 17 April 1604 – 1 May 1668) was a Flemish painter who became the leading portrait painter at the imperial court of Emperor Ferdinand III in Vienna. He is best known for his portraits of the Emperor's family and various members of the Habsburgers, including its Aus...

 

 

رسوم أولا نورمان شائعة جداً. وهذا الرسم من 1905 لرسام الكاريكاتير أولاف كروهن يوضح كيف كان على أولا نورمان حمل عبء استفتاءين (استفتاء حل الاتحاد النرويجي 1905 والاستفتاء الملكي النرويجي 1905) في سنة واحدة، بينما تقف أوروبا تراقب الموقف باستمتاع. أُولا نورمان (بالنرويجية: Ola Nordmann) ...

هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها. جزء من سلسلة مقالات سياسة المملكة المتحدةالمملكة المتحدة الدستور الدستور حقوق الإنسان الحريات المدنية التاج البريطاني الملكية تشارلز الثالث ولاية العهد أمير ويلز الأمير و�...

 

 

German association football club Football clubSC FreiburgFull nameSport-Club Freiburg e.V.Nickname(s)Breisgau-Brasilianer (Breisgau Brazilians)Founded1904; 120 years ago (1904)[1]GroundEuropa-Park StadionCapacity34,700PresidentEberhard FugmannManagerJulian SchusterLeagueBundesliga2023–24Bundesliga, 10th of 18WebsiteClub website Home colours Away colours Third colours Current season Sport-Club Freiburg e.V., commonly known as SC Freiburg (German pronunciation: [...