Primorial

In mathematics, and more particularly in number theory, primorial, denoted by "pn#", is a function from natural numbers to natural numbers similar to the factorial function, but rather than successively multiplying positive integers, the function only multiplies prime numbers.

The name "primorial", coined by Harvey Dubner, draws an analogy to primes similar to the way the name "factorial" relates to factors.

Definition for prime numbers

pn# as a function of n, plotted logarithmically.

For the nth prime number pn, the primorial pn# is defined as the product of the first n primes:[1][2]

,

where pk is the kth prime number. For instance, p5# signifies the product of the first 5 primes:

The first five primorials pn# are:

2, 6, 30, 210, 2310 (sequence A002110 in the OEIS).

The sequence also includes p0# = 1 as empty product. Asymptotically, primorials pn# grow according to:

where o( ) is Little O notation.[2]

Definition for natural numbers

n! (yellow) as a function of n, compared to n#(red), both plotted logarithmically.

In general, for a positive integer n, its primorial, n#, is the product of the primes that are not greater than n; that is,[1][3]

,

where π(n) is the prime-counting function (sequence A000720 in the OEIS), which gives the number of primes ≤ n. This is equivalent to:

For example, 12# represents the product of those primes ≤ 12:

Since π(12) = 5, this can be calculated as:

Consider the first 12 values of n#:

1, 2, 6, 6, 30, 30, 210, 210, 210, 210, 2310, 2310.

We see that for composite n every term n# simply duplicates the preceding term (n − 1)#, as given in the definition. In the above example we have 12# = p5# = 11# since 12 is a composite number.

Primorials are related to the first Chebyshev function, written ϑ(n) or θ(n) according to:

[4]

Since ϑ(n) asymptotically approaches n for large values of n, primorials therefore grow according to:

The idea of multiplying all known primes occurs in some proofs of the infinitude of the prime numbers, where it is used to derive the existence of another prime.

Characteristics

  • Let p and q be two adjacent prime numbers. Given any , where :
  • For the Primorial, the following approximation is known:[5]
.

Notes:

  1. Using elementary methods, mathematician Denis Hanson showed that [6]
  2. Using more advanced methods, Rosser and Schoenfeld showed that [7]
  3. Rosser and Schoenfeld in Theorem 4, formula 3.14, showed that for , [7]
  • Furthermore:
For , the values are smaller than e,[8] but for larger n, the values of the function exceed the limit e and oscillate infinitely around e later on.
  • Let be the k-th prime, then has exactly divisors. For example, has 2 divisors, has 4 divisors, has 8 divisors and already has divisors, as 97 is the 25th prime.
  • The sum of the reciprocal values of the primorial converges towards a constant
The Engel expansion of this number results in the sequence of the prime numbers (See (sequence A064648 in the OEIS))
  • According to Euclid's theorem, is used to prove the infinitude of the prime numbers.

Applications and properties

Primorials play a role in the search for prime numbers in additive arithmetic progressions. For instance, 2236133941 + 23# results in a prime, beginning a sequence of thirteen primes found by repeatedly adding 23#, and ending with 5136341251. 23# is also the common difference in arithmetic progressions of fifteen and sixteen primes.

Every highly composite number is a product of primorials (e.g. 360 = 2 × 6 × 30).[9]

Primorials are all square-free integers, and each one has more distinct prime factors than any number smaller than it. For each primorial n, the fraction φ(n)/n is smaller than for any lesser integer, where φ is the Euler totient function.

Any completely multiplicative function is defined by its values at primorials, since it is defined by its values at primes, which can be recovered by division of adjacent values.

Base systems corresponding to primorials (such as base 30, not to be confused with the primorial number system) have a lower proportion of repeating fractions than any smaller base.

Every primorial is a sparsely totient number.[10]

The n-compositorial of a composite number n is the product of all composite numbers up to and including n.[11] The n-compositorial is equal to the n-factorial divided by the primorial n#. The compositorials are

1, 4, 24, 192, 1728, 17280, 207360, 2903040, 43545600, 696729600, ...[12]

Appearance

The Riemann zeta function at positive integers greater than one can be expressed[13] by using the primorial function and Jordan's totient function Jk(n):

Table of primorials

n n# pn pn# Primorial prime?
pn# + 1[14] pn# − 1[15]
0 1 1 Yes No
1 1 2 2 Yes No
2 2 3 6 Yes Yes
3 6 5 30 Yes Yes
4 6 7 210 Yes No
5 30 11 2310 Yes Yes
6 30 13 30030 No Yes
7 210 17 510510 No No
8 210 19 9699690 No No
9 210 23 223092870 No No
10 210 29 6469693230 No No
11 2310 31 200560490130 Yes No
12 2310 37 7420738134810 No No
13 30030 41 304250263527210 No Yes
14 30030 43 13082761331670030 No No
15 30030 47 614889782588491410 No No
16 30030 53 32589158477190044730 No No
17 510510 59 1922760350154212639070 No No
18 510510 61 117288381359406970983270 No No
19 9699690 67 7858321551080267055879090 No No
20 9699690 71 557940830126698960967415390 No No
21 9699690 73 40729680599249024150621323470 No No
22 9699690 79 3217644767340672907899084554130 No No
23 223092870 83 267064515689275851355624017992790 No No
24 223092870 89 23768741896345550770650537601358310 No Yes
25 223092870 97 2305567963945518424753102147331756070 No No
26 223092870 101 232862364358497360900063316880507363070 No No
27 223092870 103 23984823528925228172706521638692258396210 No No
28 223092870 107 2566376117594999414479597815340071648394470 No No
29 6469693230 109 279734996817854936178276161872067809674997230 No No
30 6469693230 113 31610054640417607788145206291543662493274686990 No No
31 200560490130 127 4014476939333036189094441199026045136645885247730 No No
32 200560490130 131 525896479052627740771371797072411912900610967452630 No No
33 200560490130 137 72047817630210000485677936198920432067383702541010310 No No
34 200560490130 139 10014646650599190067509233131649940057366334653200433090 No No
35 200560490130 149 1492182350939279320058875736615841068547583863326864530410 No No
36 200560490130 151 225319534991831177328890236228992001350685163362356544091910 No No
37 7420738134810 157 35375166993717494840635767087951744212057570647889977422429870 No No
38 7420738134810 163 5766152219975951659023630035336134306565384015606066319856068810 No No
39 7420738134810 167 962947420735983927056946215901134429196419130606213075415963491270 No No
40 7420738134810 173 166589903787325219380851695350896256250980509594874862046961683989710 No No

See also

Notes

  1. ^ a b Weisstein, Eric W. "Primorial". MathWorld.
  2. ^ a b (sequence A002110 in the OEIS)
  3. ^ (sequence A034386 in the OEIS)
  4. ^ Weisstein, Eric W. "Chebyshev Functions". MathWorld.
  5. ^ G. H. Hardy, E. M. Wright: An Introduction to the Theory of Numbers. 4th Edition. Oxford University Press, Oxford 1975. ISBN 0-19-853310-1.
    Theorem 415, p. 341
  6. ^ Hanson, Denis (March 1972). "On the Product of the Primes". Canadian Mathematical Bulletin. 15 (1): 33–37. doi:10.4153/cmb-1972-007-7. ISSN 0008-4395.
  7. ^ a b Rosser, J. Barkley; Schoenfeld, Lowell (1962-03-01). "Approximate formulas for some functions of prime numbers". Illinois Journal of Mathematics. 6 (1). doi:10.1215/ijm/1255631807. ISSN 0019-2082.
  8. ^ L. Schoenfeld: Sharper bounds for the Chebyshev functions and . II. Math. Comp. Vol. 34, No. 134 (1976) 337–360; p. 359.
    Cited in: G. Robin: Estimation de la fonction de Tchebychef sur le k-ieme nombre premier et grandes valeurs de la fonction , nombre de diviseurs premiers de n. Acta Arithm. XLII (1983) 367–389 (PDF 731KB); p. 371
  9. ^ Sloane, N. J. A. (ed.). "Sequence A002182 (Highly composite numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  10. ^ Masser, D.W.; Shiu, P. (1986). "On sparsely totient numbers". Pacific Journal of Mathematics. 121 (2): 407–426. doi:10.2140/pjm.1986.121.407. ISSN 0030-8730. MR 0819198. Zbl 0538.10006.
  11. ^ Wells, David (2011). Prime Numbers: The Most Mysterious Figures in Math. John Wiley & Sons. p. 29. ISBN 9781118045718. Retrieved 16 March 2016.
  12. ^ Sloane, N. J. A. (ed.). "Sequence A036691 (Compositorial numbers: product of first n composite numbers.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  13. ^ Mező, István (2013). "The Primorial and the Riemann zeta function". The American Mathematical Monthly. 120 (4): 321.
  14. ^ Sloane, N. J. A. (ed.). "Sequence A014545 (Primorial plus 1 prime indices)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  15. ^ Sloane, N. J. A. (ed.). "Sequence A057704 (Primorial - 1 prime indices)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.

References

  • Dubner, Harvey (1987). "Factorial and primorial primes". J. Recr. Math. 19: 197–203.
  • Spencer, Adam "Top 100" Number 59 part 4.

Read other articles:

Amount of matter present in an object This article is about the scientific concept. For the main liturgical service in some Christian churches, see Mass (liturgy). For other uses, see Mass (disambiguation). MassA 2 kg (4.4 lb) cast iron weight used for balancesCommon symbolsmSI unitkilogramExtensive?yesConserved?yes Part of a series onClassical mechanics F = d d t ( m v ) {\displaystyle {\textbf {F}}={\frac {d}{dt}}(m{\textbf {v}})} Second law of motion History Timeline Textboo...

 

Wali Kota KotamobaguPetahanaAsripan Nani (Pj)sejak 25 September 2023Masa jabatan5 tahunDibentuk2007Pejabat pertamaDjelantik MokodompitSitus webkotamobagu.go.id Berikut adalah Daftar Wali Kota Kotamobagu dari masa ke masa. No Wali Kota Mulai menjabat Akhir menjabat Prd. Ket. Wakil Wali Kota Siswa Rahmat Mokodongan 2007 2008 Penjabat Sementara 1 Djelantik Mokodompit 2008 2013 1 Tatong Bara 2 Tatong Bara 22 September 2013 22 September 2018 2 [1][2] Jainuddin Damopolii * Adna...

 

Loi relative à l'enseignement supérieur et à la recherche Données clés Présentation Titre Loi no 2013-660 du 22 juillet 2013 relative à l’enseignement supérieur et à la recherche Référence NOR : ESRJ1304228L Pays France Type Loi ordinaire Branche Droit de l'éducation Adoption et entrée en vigueur Législature XIVe législature de la Cinquième République française Gouvernement Gouvernement Jean-Marc Ayrault (2) Adoption 9 juillet 2013 Signature 22 juillet 2013 ...

Устройство мартеновской печи У этого термина существуют и другие значения, см. Мартен. Марте́новская печь (марте́н) — плавильная печь для переработки передельного чугуна и лома чёрных металлов в сталь нужного химического состава и качества. Название произ�...

 

Government schoolHelen Liang Memorial Secondary SchoolLocationSha Tin, the New Territories, Hong KongCoordinates22°21′42″N 114°10′26″E / 22.36167°N 114.17389°E / 22.36167; 114.17389InformationTypeGovernment schoolMottoEruditio Et Commentatio (博學慎思)[1]Founded1961[2] (Primary School) 1977[3] (Sheung Wan) 1988[3] (Sha Tin)PrincipalMr. Chow Shau-on (周守安) Helen Liang Memorial Secondary SchoolHelen Liang Memorial Sec...

 

Town in Delaware, United StatesMiddletownTownFour corners at the main intersection of Middletown FlagSealNickname: Diamond Town of the Diamond StateLocation of Middletown in New Castle County, Delaware.MiddletownLocation within the state of DelawareShow map of DelawareMiddletownMiddletown (the United States)Show map of the United StatesCoordinates: 39°26′58″N 75°42′59″W / 39.44944°N 75.71639°W / 39.44944; -75.71639CountryUnited StatesStateDelawareCoun...

Wilhelm von Edelsheim ritratto da Raphael Mengs Wilhelm von Edelsheim (Hanau, 13 novembre 1737 – Karlsruhe, 6 dicembre 1793) è stato un politico e diplomatico tedesco. Fu presidente del consiglio privato e primo ministro del Margraviato del Baden. Biografia Wilhelm von Edelsheim era membro di una famiglia aristocratica tedesca originaria di Hanau, dove egli stesso nacque. Suo padre, Philipp Reinhard von Edelsheim (27 luglio 1695 - 11 luglio 1772), era primo ministro della contea di Hanau-M...

 

Companion of Muhammad (c. 603–679) This article is about the companion of the Islamic prophet Muhammad. For the archaeological site, see Tell Abu Hureyra. Abu Hurayraأبُو هُرَيْرَةPersonalBornc. 603Al-Jabur, Arabia (present-day Al Bahah, Saudi Arabia)Died679 (aged 75–76)Medina, Umayyad Caliphate (present-day Saudi Arabia)Resting placeAl-Baqi' Cemetery, Medina, Saudi ArabiaReligionIslamEra Islamic Medina Rashidun Caliphate Umayyad Caliphate Main interest(s)HadithKnown...

 

Disambiguazione – Indiani d'America rimanda qui. Se stai cercando la miniserie televisiva, vedi Indiani d'America (miniserie televisiva). Raffigurazione pittorica di gruppi etnici in America all'inizio del XX secolo Con l'espressione nativi americani, o talvolta anche popoli indigeni delle Americhe, indigeni americani, amerindi, prime nazioni americane, indiani d'America, popoli precolombiani, si indicano le popolazioni che abitavano il continente americano prima della colonizzazio...

Cet article est une ébauche concernant un métier. Vous pouvez partager vos connaissances en l’améliorant (comment ?) en vous référant au projet métiers. Un tisserand vers 1568 Tisserand ivoirien en 2017 Un tisserand est un artisan qui tisse divers types de fils pour en faire des étoffes. En tapisserie, le tisserand est un créateur d'œuvres textiles tissées, qui en assure lui-même le tissage[1]. Le tisserand commence son travail au lever du soleil. Histoire Certaines traces ...

 

  提示:此条目页的主题不是沙巴民族统一机构。   提示:此条目页的主题不是卡达山杜顺人统一机构 (1961)。 此條目可参照英語維基百科相應條目来扩充。若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签�...

 

För andra betydelser, se Varberg (olika betydelser). Varberg Tätort · Centralort Varbergs torg med kyrkan i bakgrunden. Land  Sverige Landskap Halland Län Hallands län Kommun Varbergs kommun Distrikt Varbergs distrikt,Träslövs distrikt,Lindbergs distrikt,Tvååkers distrikt Koordinater 57°5′50″N 12°16′24″Ö / 57.09722°N 12.27333°Ö / 57.09722; 12.27333 Area  - tätort 2 421 hektar (2020)[3]  - kommun 1...

此條目可能包含不适用或被曲解的引用资料,部分内容的准确性无法被证實。 (2023年1月5日)请协助校核其中的错误以改善这篇条目。详情请参见条目的讨论页。 各国相关 主題列表 索引 国内生产总值 石油储量 国防预算 武装部队(军事) 官方语言 人口統計 人口密度 生育率 出生率 死亡率 自杀率 谋杀率 失业率 储蓄率 识字率 出口额 进口额 煤产量 发电量 监禁率 死刑 国债 ...

 

Airtricity League 2018 Généralités Sport Football Organisateur(s) FAI Édition 98e Lieu(x) Irlande Date 16 février 201826 octobre 2018 Participants 20 équipes Site web officiel http://www.sseairtricityleague.ie/ Palmarès Tenant du titre Cork City FC Promu(s) en début de saison Waterford United Vainqueur Dundalk FC Deuxième Cork City FC Troisième Shamrock Rovers Relégué(s) Bray WanderersLimerick FC Meilleur(s) buteur(s) Patrick Hoban (29) Navigation Édition précédente Édition s...

 

Mountaineering organization based in Portland, Oregon, United States MazamasA group of climbers ascending Cooper Spur, Mount Hood, July 19, 1894.FormationJuly 19, 1894; 129 years ago (1894-07-19)FounderW. G. Steel and othersFounded atMount Hood, Oregon, USTypeNon-profit mountaineering organizationTax ID no. 93-0408077Legal status501(c)(3), NTEE Code C60HeadquartersPortland, OregonRegion Oregon, Cascade RangeProductsMazamas BulletinWebsitemazamas.org The Mazamas (/məˈzɑːm...

Presence of four copies of the short arm of chromosome 9 See also: Trisomy 9 Medical conditionTetrasomy 9pOther namesIsochromosome 9pChromosome 9, the chromosome involved in this condition Tetrasomy 9p (also known tetrasomy 9p syndrome) is a rare chromosomal disorder characterized by the presence of two extra copies of the short arm of chromosome 9 (called the p arm), in addition to the usual two.[1] Symptoms of tetrasomy 9p vary widely among affected individuals but typically include...

 

OhioWine regionOfficial nameState of OhioTypeU.S. stateYear established1803Years of wine industry1823-presentCountryUnited StatesSub-regionsGrand River Valley AVA, Isle St. George AVA, Lake Erie AVA, Loramie Creek AVA, Ohio River Valley AVAClimate regionContinental, also humid subtropical in extreme southern lowlandsTotal area44,825 square miles (116,096 km2)Grapes producedCabernet Franc, Cabernet Sauvignon, Catawba, Cayuga, Chambourcin, Chancellor, Chardonel, Chardonnay, Concord, Delawa...

 

  لمعانٍ أخرى، طالع بل (توضيح). بل   الإحداثيات 29°45′16″N 82°51′42″W / 29.754444444444°N 82.861666666667°W / 29.754444444444; -82.861666666667   [1] تقسيم إداري  البلد الولايات المتحدة[2]  التقسيم الأعلى مقاطعة جيلكريست  خصائص جغرافية  المساحة 4.316805 كيلومتر مربع4.316804 كيلو�...

Raphaël Quenard nel 2024 Raphaël Quenard (Échirolles, 16 maggio 1991[1]) è un attore francese. Indice 1 Biografia 2 Filmografia parziale 2.1 Attore 2.2 Regista, sceneggiatore e produttore 3 Riconoscimenti 4 Note 5 Altri progetti 6 Collegamenti esterni Biografia Nato a Échirolles, una banlieue di Grenoble,[1] è cresciuto a Gières.[2] Suo padre era un ricercatore che studiava la conducibilità termica, mentre sua madre lavorava per un'agenzia assicurativa.[3&#...

 

Das Königreich Sizilien (grün) um 1154. Die normannische Eroberung von Süditalien fand über einen Zeitraum von mehreren Jahrzehnten im 11. Jahrhundert statt. Normannische Söldner dienten im Mezzogiorno verschiedenen langobardischen und byzantinischen Parteien. Mit der Zeit begannen die Normannen, eigene Besitztümer und Vorformen von Kleinstaaten zu errichten. Diese schlossen sich zusammen, was die Normannen mit der Zeit zu einem de facto unabhängigen Machtfaktor in der Region machte. D...