Smooth number

In number theory, an n-smooth (or n-friable) number is an integer whose prime factors are all less than or equal to n.[1][2] For example, a 7-smooth number is a number in which every prime factor is at most 7. Therefore, 49 = 72 and 15750 = 2 × 32 × 53 × 7 are both 7-smooth, while 11 and 702 = 2 × 33 × 13 are not 7-smooth. The term seems to have been coined by Leonard Adleman.[3] Smooth numbers are especially important in cryptography, which relies on factorization of integers. 2-smooth numbers are simply the powers of 2, while 5-smooth numbers are also known as regular numbers.

Definition

A positive integer is called B-smooth if none of its prime factors are greater than B. For example, 1,620 has prime factorization 22 × 34 × 5; therefore 1,620 is 5-smooth because none of its prime factors are greater than 5. This definition includes numbers that lack some of the smaller prime factors; for example, both 10 and 12 are 5-smooth, even though they miss out the prime factors 3 and 5, respectively. All 5-smooth numbers are of the form 2a × 3b × 5c, where a, b and c are non-negative integers.

The 3-smooth numbers have also been called "harmonic numbers", although that name has other more widely used meanings.[4] 5-smooth numbers are also called regular numbers or Hamming numbers;[5] 7-smooth numbers are also called humble numbers,[6] and sometimes called highly composite,[7] although this conflicts with another meaning of highly composite numbers.

Here, note that B itself is not required to appear among the factors of a B-smooth number. If the largest prime factor of a number is p then the number is B-smooth for any Bp. In many scenarios B is prime, but composite numbers are permitted as well. A number is B-smooth if and only if it is p-smooth, where p is the largest prime less than or equal to B.

Applications

An important practical application of smooth numbers is the fast Fourier transform (FFT) algorithms (such as the Cooley–Tukey FFT algorithm), which operates by recursively breaking down a problem of a given size n into problems the size of its factors. By using B-smooth numbers, one ensures that the base cases of this recursion are small primes, for which efficient algorithms exist. (Large prime sizes require less-efficient algorithms such as Bluestein's FFT algorithm.)

5-smooth or regular numbers play a special role in Babylonian mathematics.[8] They are also important in music theory (see Limit (music)),[9] and the problem of generating these numbers efficiently has been used as a test problem for functional programming.[10]

Smooth numbers have a number of applications to cryptography.[11] While most applications center around cryptanalysis (e.g. the fastest known integer factorization algorithms, for example: General number field sieve algorithm), the VSH hash function is another example of a constructive use of smoothness to obtain a provably secure design.

Distribution

Let denote the number of y-smooth integers less than or equal to x (the de Bruijn function).

If the smoothness bound B is fixed and small, there is a good estimate for :

where denotes the number of primes less than or equal to .

Otherwise, define the parameter u as u = log x / log y: that is, x = yu. Then,

where is the Dickman function.

For any k, almost all natural numbers will not be k-smooth.

If where is -smooth and is not (or is equal to 1), then is called the -smooth part of . The relative size of the -smooth part of a random integer less than or equal to is known to decay much more slowly than .[12]

Powersmooth numbers

Further, m is called n-powersmooth (or n-ultrafriable) if all prime powers dividing m satisfy:

For example, 720 (24 × 32 × 51) is 5-smooth but not 5-powersmooth (because there are several prime powers greater than 5, e.g. and ). It is 16-powersmooth since its greatest prime factor power is 24 = 16. The number is also 17-powersmooth, 18-powersmooth, etc.

Unlike n-smooth numbers, for any positive integer n there are only finitely many n-powersmooth numbers, in fact, the n-powersmooth numbers are exactly the positive divisors of “the least common multiple of 1, 2, 3, …, n” (sequence A003418 in the OEIS), e.g. the 9-powersmooth numbers (also the 10-powersmooth numbers) are exactly the positive divisors of 2520.

n-smooth and n-powersmooth numbers have applications in number theory, such as in Pollard's p − 1 algorithm and ECM. Such applications are often said to work with "smooth numbers," with no n specified; this means the numbers involved must be n-powersmooth, for some unspecified small number n. As n increases, the performance of the algorithm or method in question degrades rapidly. For example, the Pohlig–Hellman algorithm for computing discrete logarithms has a running time of O(n1/2)—for groups of n-smooth order.

Smooth over a set A

Moreover, m is said to be smooth over a set A if there exists a factorization of m where the factors are powers of elements in A. For example, since 12 = 4 × 3, 12 is smooth over the sets A1 = {4, 3}, A2 = {2, 3}, and , however it would not be smooth over the set A3 = {3, 5}, as 12 contains the factor 4 = 22, and neither 4 nor 2 are in A3.

Note the set A does not have to be a set of prime factors, but it is typically a proper subset of the primes as seen in the factor base of Dixon's factorization method and the quadratic sieve. Likewise, it is what the general number field sieve uses to build its notion of smoothness, under the homomorphism .[13]

See also

Notes and references

  1. ^ "P-Smooth Numbers or P-friable Number". GeeksforGeeks. 2018-02-12. Retrieved 2019-12-12.
  2. ^ Weisstein, Eric W. "Smooth Number". mathworld.wolfram.com. Retrieved 2019-12-12.
  3. ^ Hellman, M. E.; Reyneri, J. M. (1983). "Fast Computation of Discrete Logarithms in GF (q)". Advances in Cryptology – Proceedings of Crypto 82. pp. 3–13. doi:10.1007/978-1-4757-0602-4_1. ISBN 978-1-4757-0604-8.
  4. ^ Sloane, N. J. A. (ed.). "Sequence A003586 (3-smooth numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  5. ^ "Python: Get the Hamming numbers upto a given numbers also check whether a given number is an Hamming number". w3resource. Retrieved 2019-12-12.
  6. ^ "Problem H: Humble Numbers". www.eecs.qmul.ac.uk. Retrieved 2019-12-12.
  7. ^ Sloane, N. J. A. (ed.). "Sequence A002473 (7-smooth numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  8. ^ Aaboe, Asger (1965), "Some Seleucid mathematical tables (extended reciprocals and squares of regular numbers)", Journal of Cuneiform Studies, 19 (3): 79–86, doi:10.2307/1359089, JSTOR 1359089, MR 0191779, S2CID 164195082.
  9. ^ Longuet-Higgins, H. C. (1962), "Letter to a musical friend", Music Review (August): 244–248.
  10. ^ Dijkstra, Edsger W. (1981), Hamming's exercise in SASL (PDF), Report EWD792. Originally a privately circulated handwritten note.
  11. ^ Naccache, David; Shparlinski, Igor (17 October 2008). "Divisibility, Smoothness and Cryptographic Applications" (PDF). eprint.iacr.org. arXiv:0810.2067. Retrieved 26 July 2017.f
  12. ^ Kim, Taechan; Tibouchi, Mehdi (2015). "Invalid Curve Attacks in a GLS Setting". In Tanaka, Keisuke; Suga, Yuji (eds.). Advances in Information and Computer Security – 10th International Workshop on Security, IWSEC 2015, Nara, Japan, August 26–28, 2015, Proceedings. Lecture Notes in Computer Science. Vol. 9241. Springer. pp. 41–55. doi:10.1007/978-3-319-22425-1_3.
  13. ^ Briggs, Matthew E. (17 April 1998). "An Introduction to the General Number Field Sieve" (PDF). math.vt.edu. Blacksburg, Virginia: Virginia Polytechnic Institute and State University. Retrieved 26 July 2017.

Bibliography

The On-Line Encyclopedia of Integer Sequences (OEIS) lists B-smooth numbers for small Bs:

Read other articles:

WanasariKecamatanPeta lokasi Kecamatan WanasariNegara IndonesiaProvinsiJawa TengahKabupatenBrebesPemerintahan • CamatNuruddin SH[1]Populasi • Total140,251 Jiwa (2.013)[2] jiwaKode Kemendagri33.29.08 Kode BPS3329140 Desa/kelurahan20 Untuk kegunaan lain, lihat Wanasari (disambiguasi). Wanasari (Jawa: ꦮꦤꦱꦫꦶ) adalah sebuah kecamatan di Kabupaten Brebes, Provinsi Jawa Tengah, Indonesia. Pusat pemerintahannya bertempat di desa Klampok. Keca...

 

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Al-Harits V bin JabalahRaja Ghassaniyah, Patrisius Romawi, dan Filarkhos SarakenBerkuasak. 528 – 569 MPendahuluJabalah IVPenerusal-Mundzir IIIKematian569AyahJabalah IV Al-Ḥarits bin Jabalah (Arab: الحارث بن جبلةcode: ar is deprecated )...

 

 

Untuk kegunaan lain, lihat Dinasti Tang (disambiguasi). Artikel ini telah dinilai sebagai artikel pilihan pada 10 September 2015 (Pembicaraan artikel) Dinasti Tang唐朝618–907Tiongkok pada masa kekuasaan Wu Zetian kurang lebih pada tahun 700 MStatusKekaisaranIbu kota618–904    Chang'an684–705dan 904–7  LuoyangBahasa yang umum digunakanTiongkok PertengahanAgama Buddhisme TiongkokTaoismeKonfusianismeKepercayaan tradisional Tiongkok...

Santo Didymus Si ButaSanto Didymus Si ButaDekan Sekolah Teologia AleksandriaLahir~ 313Meninggal~ 398Dihormati diGereja Ortodoks OrientalesGereja Ortodoks SerbiaPesta18 Oktober (Gereja Ortodoks Serbia)Pelindungorang buta Didymus Si Buta (juga dieja Dedimus atau Didymous)[1] (~ 313 – 398) adalah seorang penulis spiritual Kristen, teolog, dan penafsir Alkitab asal Aleksandria, Mesir.[2] Sejak berusia 4 tahun dia sudah mengalami kebutaan.[2] Didymus sangat menentang Mani...

 

 

Daun afrika Vernonia amygdalina TaksonomiDivisiTracheophytaSubdivisiSpermatophytesKladAngiospermaeKladmesangiospermsKladeudicotsKladcore eudicotsKladasteridsKladcampanulidsOrdoAsteralesFamiliAsteraceaeSubfamiliCichorioideaeTribusVernonieaeGenusVernoniaSpesiesVernonia amygdalina Delile, 1826 lbs Daun afrika papua tanaman daun afrika Daun afrika (Vernonia amygdalina) adalah tumbuhan semak yang berasal dari benua Afrika dan bagian lain dari Afrika, khususnya Nigeria, Kamerun dan Zimbabwe dan neg...

 

 

1981 studio album by Chaz JankelChasanovaStudio album by Chaz JankelReleased1981RecordedJanuary–July 1981StudioEastcote Products Recording Studios (London)Genre Electronic funk blue-eyed soul reggae Length37:34LabelA&MProducer Philip Bagenal Chaz Jankel Peter Van Hooke Chaz Jankel chronology Chas Jankel(1980) Chasanova(1981) Chazablanca(1983) Singles from Chasanova 109Released: 1981 QuestionnaireReleased: 1981 Glad to Know YouReleased: 1981 Chasanova is the second solo studio a...

Ne doit pas être confondu avec Champ de Mars (métro de Paris). Champ de Mars - Tour Eiffel La gare vue des quais de Seine. Localisation Pays France Commune Paris Arrondissement 7e et 15e Adresse Quai Branly(Pont de Bir-Hakeim)75007 Paris / 75015 Paris Coordonnées géographiques 48° 51′ 24″ nord, 2° 17′ 23″ est Gestion et exploitation Propriétaire SNCF Exploitant SNCF Code UIC 87393058 Site Internet La gare du Champ de Mars - Tour Eiffel, sur le sit...

 

 

Sachono Direktur Kesenjataan Pusat Kesenjataan Infanteri TNI-ADPetahanaMulai menjabat 1 April 2024PendahuluWindiyatnoPenggantiPetahanaKepala Staf Komando Daerah Militer IX/UdayanaMasa jabatan29 Agustus 2022 – 1 April 2024PendahuluHarfendiPenggantiHartonoDanpusdikpengmilum KodiklatadMasa jabatan25 Februari 2022 – 29 Agustus 2022PendahuluFaisal AhmadiPenggantiWadi PrihanaAsisten Operasi Kepala Staf Kogabwilhan IIMasa jabatan2 Agustus 2021 – 25 Februari 2022P...

 

 

† Человек прямоходящий Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:Синапсиды�...

МифологияРитуально-мифологическийкомплекс Система ценностей Сакральное Миф Мономиф Теория основного мифа Ритуал Обряд Праздник Жречество Мифологическое сознание Магическое мышление Низшая мифология Модель мира Цикличность Сотворение мира Мировое яйцо Мифическое �...

 

 

Sceaux 行政国 フランス地域圏 (Région) イル=ド=フランス地域圏県 (département) オー=ド=セーヌ県郡 (arrondissement) アントニー郡小郡 (canton) 小郡庁所在地INSEEコード 92071郵便番号 92330市長(任期) フィリップ・ローラン(2008年-2014年)自治体間連合 (fr) メトロポール・デュ・グラン・パリ人口動態人口 19,679人(2007年)人口密度 5466人/km2住民の呼称 Scéens地理座標 北緯48度4...

 

 

Private international high school in Istanbul, TurkeyDeutsche Schule IstanbulÖzel Alman LisesiAddressŞahkulu Bostanı Sk. 8 34420 BeyoğluIstanbulTurkeyCoordinates41°01′40″N 28°58′32″E / 41.02778°N 28.97556°E / 41.02778; 28.97556InformationSchool typePrivate international high schoolEstablished1 May 1868PrincipalGerman: Hans BrügmannTurkish: S. Didem VeyisoğluTeaching staff51 German, 36 TurkishEnrollment640Color(s)   Blue-WhiteWebsiteds-istanb...

Resolusi 427Dewan Keamanan PBBLokasi Garis BiruTanggal3 Mei 1978Sidang no.2.076KodeS/RES/427 (Dokumen)TopikIsrael-LebanonRingkasan hasil12 mendukungTidak ada menentang2 abstainHasilDiadopsiKomposisi Dewan KeamananAnggota tetap Tiongkok Prancis Britania Raya Amerika Serikat Uni SovietAnggota tidak tetap Bolivia Kanada Jerman Barat Gabon India Kuwait Mauritania Nigeria Cekoslowakia Venezuela Resolusi Dewan Keam...

 

 

Video game character hoax Not to be confused with Shenlong or Cheng Long. Fictional character Sheng LongStreet Fighter characterSheng Long from Electronic Gaming MonthlyFirst appearanceElectronic Gaming Monthly (1992)First gameStreet Fighter 6 (2023)Created byKen Williams[1]Designed byKen Williams (1993)[1]Mike Vallas (1997)[1]Shigenori Kiwata (2017)[2]Sheng Long is a character hoax related to the Street Fighter series, created by Electronic Gaming Monthly as a...

 

 

Term of the state legislature of Sarawak, Malaysia 18th Sarawak State Legislative Assembly ←17th Assembly 19th Assembly→Sarawak State Legislative Assembly Building, KuchingOverviewLegislative bodySarawak State Legislative AssemblyJurisdictionSarawakMeeting placeSarawak State Legislative Assembly BuildingTerm7 June 2016 (2016-06-07)[1] – 3 November 2021 (2021-11-03)Election2016 Sarawak state electionGovernmentSecond Adenan cabinetJohari ...

This article is about Annie Lennox's solo career. For works within Eurythmics, see Eurythmics discography. Annie Lennox discographyAnnie Lennox performing at the Rally For Human Rights during the International AIDS Conference 2010 in ViennaStudio albums6Compilation albums1Video albums4Music videos23EPs1Singles23B-sides15Soundtrack albums1 This article is the discography of the Scottish pop and rock singer-songwriter Annie Lennox. After a decade of major international success as part of Euryt...

 

 

Team large hill at the FIS Nordic World Ski Championships 2015Date28 February 2015Competitors52 from 13 nationsWinning points872.6Medalists  Anders BardalAnders JacobsenAnders FannemelRune Velta   Norway Stefan KraftMichael HayböckManuel PoppingerGregor Schlierenzauer   Austria Piotr ŻyłaKlemens MurańkaJan ZiobroKamil Stoch   Poland← 20132017 → FIS Nordic WorldSki Championships 2015Cross-country skiing...

 

 

American drummer This biography of a living person includes a list of general references, but it lacks sufficient corresponding inline citations. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately, especially if potentially libelous or harmful. Please help to improve this article by introducing more precise citations. (February 2014) (Learn how and when to remove this message)Mark GuilianaBackground informationBorn (1980-09-02) September ...

Part of a series onWomen in society Society Women's history (legal rights) Woman Animal advocacy Business Female entrepreneurs Gender representation on corporate boards of directors Diversity (politics) Diversity, equity, and inclusion Economic development Explorers and travelers Education Feminism Womyn Government Conservatives in the US Heads of state or government Legislators Queen regnant List Health Journalism Law Law enforcement Military Mother Nobel Prize laureates Piracy Positio...

 

 

UEFA Champions League 2020-2021 Competizione UEFA Champions League Sport Calcio Edizione 66ª Organizzatore UEFA Date dall'8 agosto 2020al 29 maggio 2021 Partecipanti 32 (79 alle qualificazioni) Nazioni 54 Sede finale Stadio do Dragão(Porto) Risultati Vincitore Chelsea(2º titolo) Finalista Manchester City Semi-finalisti Paris Saint-GermainReal Madrid Statistiche Miglior giocatore Jorginho[1] Miglior marcatore Erling Haaland (10) Miglior portiere Edouard Mendy Inc...