Abundant number

Demonstration, with Cuisenaire rods, of the abundance of the number 12

In number theory, an abundant number or excessive number is a positive integer for which the sum of its proper divisors is greater than the number. The integer 12 is the first abundant number. Its proper divisors are 1, 2, 3, 4 and 6 for a total of 16. The amount by which the sum exceeds the number is the abundance. The number 12 has an abundance of 4, for example.

Definition

An abundant number is a natural number n for which the sum of divisors σ(n) satisfies σ(n) > 2n, or, equivalently, the sum of proper divisors (or aliquot sum) s(n) satisfies s(n) > n.

The abundance of a natural number is the integer σ(n) − 2n (equivalently, s(n) − n).

Examples

The first 28 abundant numbers are:

12, 18, 20, 24, 30, 36, 40, 42, 48, 54, 56, 60, 66, 70, 72, 78, 80, 84, 88, 90, 96, 100, 102, 104, 108, 112, 114, 120, ... (sequence A005101 in the OEIS).

For example, the proper divisors of 24 are 1, 2, 3, 4, 6, 8, and 12, whose sum is 36. Because 36 is greater than 24, the number 24 is abundant. Its abundance is 36 − 24 = 12.

Properties

  • The smallest odd abundant number is 945.
  • The smallest abundant number not divisible by 2 or by 3 is 5391411025 whose distinct prime factors are 5, 7, 11, 13, 17, 19, 23, and 29 (sequence A047802 in the OEIS). An algorithm given by Iannucci in 2005 shows how to find the smallest abundant number not divisible by the first k primes.[1] If represents the smallest abundant number not divisible by the first k primes then for all we have
for sufficiently large k.
  • Every multiple of a perfect number (except the perfect number itself) is abundant.[2] For example, every multiple of 6 greater than 6 is abundant because
  • Every multiple of an abundant number is abundant.[2] For example, every multiple of 20 (including 20 itself) is abundant because
  • Consequently, infinitely many even and odd abundant numbers exist.
Let be the number of abundant numbers not exceeding . Plot of for (with log-scaled)
  • Furthermore, the set of abundant numbers has a non-zero natural density.[3] Marc Deléglise showed in 1998 that the natural density of the set of abundant numbers and perfect numbers is between 0.2474 and 0.2480.[4]
  • An abundant number which is not the multiple of an abundant number or perfect number (i.e. all its proper divisors are deficient) is called a primitive abundant number
  • An abundant number whose abundance is greater than any lower number is called a highly abundant number, and one whose relative abundance (i.e. s(n)/n ) is greater than any lower number is called a superabundant number
  • Every integer greater than 20161 can be written as the sum of two abundant numbers. The largest even number that is not the sum of two abundant numbers is 46.[5]
  • An abundant number which is not a semiperfect number is called a weird number.[6] An abundant number with abundance 1 is called a quasiperfect number, although none have yet been found.
  • Every abundant number is a multiple of either a perfect number or a primitive abundant number.
Euler diagram of numbers under 100:
   Abundant
   Weird
   Perfect

Numbers whose sum of proper factors equals the number itself (such as 6 and 28) are called perfect numbers, while numbers whose sum of proper factors is less than the number itself are called deficient numbers. The first known classification of numbers as deficient, perfect or abundant was by Nicomachus in his Introductio Arithmetica (circa 100 AD), which described abundant numbers as like deformed animals with too many limbs.

The abundancy index of n is the ratio σ(n)/n.[7] Distinct numbers n1, n2, ... (whether abundant or not) with the same abundancy index are called friendly numbers.

The sequence (ak) of least numbers n such that σ(n) > kn, in which a2 = 12 corresponds to the first abundant number, grows very quickly (sequence A134716 in the OEIS).

The smallest odd integer with abundancy index exceeding 3 is 1018976683725 = 33 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29.[8]

If p = (p1, ..., pn) is a list of primes, then p is termed abundant if some integer composed only of primes in p is abundant. A necessary and sufficient condition for this is that the product of pi/(pi − 1) be > 2.[9]

References

  1. ^ D. Iannucci (2005), "On the smallest abundant number not divisible by the first k primes", Bulletin of the Belgian Mathematical Society, 12 (1): 39–44, doi:10.36045/bbms/1113318127
  2. ^ a b Tattersall (2005) p.134
  3. ^ Hall, Richard R.; Tenenbaum, Gérald (1988). Divisors. Cambridge Tracts in Mathematics. Vol. 90. Cambridge: Cambridge University Press. p. 95. ISBN 978-0-521-34056-4. Zbl 0653.10001.
  4. ^ Deléglise, Marc (1998). "Bounds for the density of abundant integers". Experimental Mathematics. 7 (2): 137–143. CiteSeerX 10.1.1.36.8272. doi:10.1080/10586458.1998.10504363. ISSN 1058-6458. MR 1677091. Zbl 0923.11127.
  5. ^ Sloane, N. J. A. (ed.). "Sequence A048242 (Numbers that are not the sum of two abundant numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  6. ^ Tattersall (2005) p.144
  7. ^ Laatsch, Richard (1986). "Measuring the abundancy of integers". Mathematics Magazine. 59 (2): 84–92. doi:10.2307/2690424. ISSN 0025-570X. JSTOR 2690424. MR 0835144. Zbl 0601.10003.
  8. ^ For smallest odd integer k with abundancy index exceeding n, see Sloane, N. J. A. (ed.). "Sequence A119240 (Least odd number k such that sigma(k)/k >= n.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  9. ^ Friedman, Charles N. (1993). "Sums of divisors and Egyptian fractions". Journal of Number Theory. 44 (3): 328–339. doi:10.1006/jnth.1993.1057. MR 1233293. Zbl 0781.11015.

Read other articles:

Antoon Arnold Frederik Lanzing Antoon Arnold Fredrik Lanzing (Boxmeer, 12 September 1834 - Breda, 1917) adalah mayor jenderal Belanda yang dianugerahi gelar ksatria dalam Militaire Willems-Orde. Karier Lanzing mengikuti pendidikan militer dan pada tahun 1860 diangkat sebagai letnan satu di Batalyon III Resimen Infanteri II di garnisun Vlissingen. Pada tahun yang sama, ia dialihfungsikan sebagai ajudan di Batalyon II Resimen II di Middelburg. Antara bulan Maret 1867-1872, ia dilepaskan ke Koni...

 

Ii Naomasa Penguasa TakasakiMasa jabatan1590–1600 Pendahulutidak adaPenggantiSakai IetsuguDomain HikoneMasa jabatan1600–1602 Pendahulutidak adaPenggantiIi Naokatsu Informasi pribadiLahir(1561-03-04)4 Maret 1561Provinsi Totomi, JepangMeninggal24 Maret 1602(1602-03-24) (umur 42)Edo, JepangKebangsaanJepangSunting kotak info • L • B Ii Naomasa (井伊 直政code: ja is deprecated ) (4 Maret 1561–24 Maret 1602) adalah seorang daimyo pada masa periode Sengoku dan juga pada ...

 

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Kampung Sungai Kayu Ara – news · newspapers · books · scholar · JSTOR (November 2015) (Learn how and when to remove this template message) Kampung Sungai Kayu Ara is a small village in the Petaling Jaya Utara (PJU6) section of Petaling Jaya, Selangor, Malaysia. This village is l...

Pour les articles homonymes, voir Porto (homonymie). Porto Un verre de porto tawny. Désignation(s) Porto Appellation(s) principale(s) Porto Type d'appellation(s) Denominação de Origem Controlada (DOC) Reconnue depuis 1756 Pays Portugal Région parente Vignoble de la vallée du Haut Douro Climat méditerranéen Sol surface schisteuse et sous-sol granitique Cépages dominants touriga nacional, tinta roriz, touriga franca, tinta barroca, tinta cão (ou red dog) Vins produits vin mutéPorto T...

 

Darkest HourPoster film Darkest HourSutradaraJoe WrightProduserTim BevanLisa BruceEric FellnerAnthony McCartenDouglas UrbanskiDitulis olehAnthony McCartenPemeranGary OldmanBen MendelsohnKristin Scott ThomasLily JamesStephen DillaneRonald PickupPenata musikDario MarianelliSinematograferBruno DelbonnelPenyuntingValerio BonelliPerusahaanproduksiPerfect World PicturesWorking Title FilmsDistributorFocus FeaturesTanggal rilis 1 September 2017 (2017-09-01) (Festival Film Telluride) 22...

 

PierrycomunePierry – Veduta LocalizzazioneStato Francia RegioneGrand Est Dipartimento Marna ArrondissementÉpernay CantoneÉpernay-2 TerritorioCoordinate49°01′N 3°56′E / 49.016667°N 3.933333°E49.016667; 3.933333 (Pierry)Coordinate: 49°01′N 3°56′E / 49.016667°N 3.933333°E49.016667; 3.933333 (Pierry) Superficie5,15 km² Abitanti1 232[1] (2009) Densità239,22 ab./km² Altre informazioniCod. postale51530 Fuso orario...

  لمعانٍ أخرى، طالع هوليوود (توضيح). هوليوود     الإحداثيات 34°05′54″N 118°19′36″W / 34.098333333333°N 118.32666666667°W / 34.098333333333; -118.32666666667 [1]  [2] تقسيم إداري  البلد الولايات المتحدة[3][4]  التقسيم الأعلى لوس أنجلوس[5]  خصائص جغرافية  المساحة...

 

US geographical feature For other uses, see Cache Valley (disambiguation). Cache ValleyAerial view of the Wellsville Mountains at the southwestern end of the Cache Valley, September 2009Length50 mi (80 km)GeographyCountryUnited StatesStatesUtahIdahoCountiesCache County, UtahFranklin County, IdahoPopulation centersLogan, UtahPreston, IdahoBorders onBannock RangeWellsville MountainsBear River MountainsWasatch RangeCoordinates41°54′N 111°54′W / 41.9°N 111.9°W&#x...

 

Dieser Artikel befasst sich mit den herausragenden frühchristlichen Autoren. Der historische Vertreter einer Kirchengemeinde wird unter Kirchvater behandelt. Darstellung der Kirchenväter in der altrussischen Sammelhandschrift Isbornik Swjatoslaws (1073) Als Kirchenvater (von lateinisch pater ecclesiae zu altgriechisch πατὴρ ἐκκλησιαστικός patḗr ekklēsiastikós) wird ein christlicher Autor der ersten acht Jahrhunderte n. Chr. bezeichnet, der entscheidend zur Leh...

Kaola redirects here. For the animal, see koala.Chinese multinational technology company Alibaba Group Holding LimitedTaobao City, the main corporate campus of Alibaba Group at Xixi, HangzhouNative name阿里巴巴集团控股有限公司Company typePublicTraded asNYSE: BABASEHK: 9988Hang Seng Index componentISINUS01609W1027IndustryE-commercecloud computingartificial intelligenceentertainmentmobile commerceretailmobile mediafilmsTV showsFounded28 June 1999; 24 years ago...

 

HPE CEO Not to be confused with Florentine priest Antonio Neri. Not to be confused with HP CEO Dion Weisler. Antonio NeriBorn (1967-05-10) May 10, 1967 (age 57)[1]ArgentinaCitizenshipArgentine and American[2]Alma materUniversidad Tecnológica NacionalEmployerHewlett Packard EnterpriseTitlePresident and CEO of Hewlett Packard EnterprisePredecessorMeg WhitmanBoard member ofHewlett Packard EnterpriseChildren2 Antonio Neri (born May 10, 1967) is an Argentine-Italian...

 

American media executive For the artist, see Cesar Conde (artist). This biographical article is written like a résumé. Please help improve it by revising it to be neutral and encyclopedic. (October 2021) Cesar CondeConde at the Knight Foundation in 2013BornNew York City, New York, U.S.EducationHarvard University (BA)University of Pennsylvania (MBA)SpousePamela Silva (2009–2020) Cesar Conde is an American media executive currently serving as chairman of the NBCUniversal News Group, oversee...

Australian investigative journalist and author Ross CoulthartCoulthart in 2012CitizenshipAustralianEducationVictoria University of WellingtonWebsitewww.rosscoulthart.com Ross Coulthart is an Australian investigative journalist and author who has also worked in public relations. He is an advocate for the idea that governments are covering up knowledge of UFOs and alien visitations. Ross Coulthart at Mosman Library, Australia in 2012 Early life Coulthart was born in the UK. He later moved along...

 

American college basketball season This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: 2000–01 Temple Owls men's basketball team – news · newspapers · books · scholar · JSTOR (January 2021) (Learn how and when to remove this message) 2000–01 Temple Owls men's basketballAtlantic 10 Tournament ChampionsNCAA To...

 

Questa voce sull'argomento calciatori statunitensi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Jakes MulhollandNazionalità Stati Uniti Calcio RuoloDifensore Termine carriera19?? CarrieraNazionale 1924 Stati Uniti2 (0) 1 I due numeri indicano le presenze e le reti segnate, per le sole partite di campionato.Il simbolo → indica un trasferimento in prestito.   Modifica dati su Wikidata...

Division I 1968-1969 Competizione Pro League Sport Calcio Edizione 66ª Organizzatore URBSFA/KBVB Date dal settembre 1968al maggio 1969 Luogo  Belgio Partecipanti 16 Risultati Vincitore Standard Liegi(4º titolo) Retrocessioni KFC Malinois, R. Daring Club de Bruxelles Cronologia della competizione 1967-1968 1969-1970 Manuale La Division I 1968-1969 è stata la 66ª edizione della massima serie del campionato belga di calcio disputata tra il settembre 1968 e il maggio 1969 e conc...

 

Flyttal är en approximerad datorrepresentation av reella tal. Ett normaliserat flyttal består av tecken (plus eller minus, vanligtvis representerat med en bit) en mantissa (även kallad taldel) och en exponent (även kallad karakteristika), och kan skrivas som: t ⋅ m ⋅ r e {\displaystyle t\cdot m\cdot r^{e}} där t {\displaystyle t} är tecknet ( ± {\displaystyle \pm } ) m {\displaystyle m} är mantissan (som är minst 1 men mindre än r {\displaystyle r} ) r {\displays...

 

Subramanyam Bharti Awardसुब्रह्मण्यम भारती पुरस्कारAward for contributions to Hindi LiteratureAwarded forLiterary award in IndiaSponsored byKendriya Hindi Sansthan, Government of IndiaFirst awarded1989Last awarded2007HighlightsTotal awarded46First winnerDr. Prabhakar MachweDr. Wrajeshhwar VermaDr. Hardev BahariDr. N.A NagappaPro. Ram Singh TomarDr. Bhakt DarshanDr. P Gopal SharmaSri Mangalnath SinghLast winnerPro. Nirmala JainPro. Nandkishore ...

Canadian-American former pornographic actress (born 1981) Karenjit Kaur redirects here. For the series, see Karenjit Kaur – The Untold Story of Sunny Leone. For the Venezuelan jockey, see Sonny Leon. For the American pornographic actress and nude model, see Sunny Lane. Sunny LeoneSunny Leone in 2022BornKarenjit Kaur Vohra (1981-05-13) May 13, 1981 (age 43)[1]Sarnia, Ontario, CanadaOther namesKaren MalhotraKarenjit Kaur WeberCitizenshipCanadaUnited StatesOccupationsActressf...

 

Irish physicist (1826–1911) George Johnstone StoneyFRSStoney, c. 1890sBorn(1826-02-15)15 February 1826Parsonstown, King's County, Ireland(now Birr, County Offaly)Died5 July 1911(1911-07-05) (aged 85)Notting Hill, London, EnglandAlma materTrinity College Dublin (BA, MA)Known forCoining the term 'electron'Stoney unitsSpouseMargaret Sophia StoneyChildren5, including Edith and FlorenceRelativesBindon Blood Stoney (brother)George Francis FitzGerald (nephew)AwardsFRS (1861)Bo...