Hexagonal number

Proof without words that a hexagonal number (middle column) can be rearranged as rectangular and odd-sided triangular numbers

A hexagonal number is a figurate number. The nth hexagonal number hn is the number of distinct dots in a pattern of dots consisting of the outlines of regular hexagons with sides up to n dots, when the hexagons are overlaid so that they share one vertex.

The first four hexagonal numbers.
The first four hexagonal numbers.

The formula for the nth hexagonal number

The first few hexagonal numbers (sequence A000384 in the OEIS) are:

1, 6, 15, 28, 45, 66, 91, 120, 153, 190, 231, 276, 325, 378, 435, 496, 561, 630, 703, 780, 861, 946...

Every hexagonal number is a triangular number, but only every other triangular number (the 1st, 3rd, 5th, 7th, etc.) is a hexagonal number. Like a triangular number, the digital root in base 10 of a hexagonal number can only be 1, 3, 6, or 9. The digital root pattern, repeating every nine terms, is "1 6 6 1 9 3 1 3 9".

Every even perfect number is hexagonal, given by the formula

where Mp is a Mersenne prime. No odd perfect numbers are known, hence all known perfect numbers are hexagonal.
For example, the 2nd hexagonal number is 2×3 = 6; the 4th is 4×7 = 28; the 16th is 16×31 = 496; and the 64th is 64×127 = 8128.

The largest number that cannot be written as a sum of at most four hexagonal numbers is 130. Adrien-Marie Legendre proved in 1830 that any integer greater than 1791 can be expressed in this way.

In addition, only two integers cannot be expressed using five hexagonal numbers (but can be with six), those being 11 and 26.

Hexagonal numbers should not be confused with centered hexagonal numbers, which model the standard packaging of Vienna sausages. To avoid ambiguity, hexagonal numbers are sometimes called "cornered hexagonal numbers".

Test for hexagonal numbers

One can efficiently test whether a positive integer x is a hexagonal number by computing

If n is an integer, then x is the nth hexagonal number. If n is not an integer, then x is not hexagonal.

Congruence relations

Other properties

Expression using sigma notation

The nth number of the hexagonal sequence can also be expressed by using sigma notation as

where the empty sum is taken to be 0.

Sum of the reciprocal hexagonal numbers

The sum of the reciprocal hexagonal numbers is 2ln(2), where ln denotes natural logarithm.

Multiplying the index

Using rearrangement, the next set of formulas is given:

Ratio relation

Using the final formula from before with respect to m and then n, and then some reducing and moving, one can get to the following equation:

Numbers of divisors of powers of certain natural numbers

for n>0 has divisors.

Likewise, for any natural number of the form where p and q are distinct prime numbers, for n>0 has divisors.

Proof. has divisors of the form , for k = 0 ... 2(n − 1), l = 0 ... n − 1. Each combination of k and l yields a distinct divisor, so has divisors, i.e. divisors. ∎

Hexagonal square numbers

The sequence of numbers that are both hexagonal and perfect squares starts 1, 1225, 1413721,... OEISA046177.

See also

  • Weisstein, Eric W. "Hexagonal Number". MathWorld.

Read other articles:

Mahkota Kerajaan Pajajaran Binokasih Sanghyang Pake Binokasih Sanghyang Paké adalah mahkota yang berasal dari Kerajaan Sumedang Larang dan kini tersimpan sebagai koleksi Museum Prabu Geusan Ulun, Sumedang. Replika mahkota ini terdapat di Museum Sri Baduga, Bandung.[1][2] Sejarah Menurut sumber turun-temurun, mahkota ini dibuat atas prakarsa Sanghyang Bunisora Suradipati, raja Galuh (1357-1371). Mahkota ini digunakan oleh raja-raja Sunda selanjutnya dalam upacara pelantikan ra...

 

 

AjegroupJenisSwastaIndustriBeverageDidirikan1988; 36 tahun lalu (1988)PendiriAñaños-Jerí FamilyKantorpusatLima, Peru[1]Wilayah operasiGlobalTokohkunciAngel Añaños (Ketua dan CEO) Carlos Añaños (Presiden)ProdukPurified water, fruit juices, carbonated drinks, energy drinks, ready-to-drink teas, grocery foods and alcoholic drinksKaryawan10,000Situs webwww.ajegroup.com AJEGROUP adalah perusahaan yang memproduksi, mendistribusikan dan memasarkan sirup dan minuman tak berakohol ...

 

 

Italian tennis player Lorenzo SonegoSonego at the 2022 French OpenCountry (sports) ItalyBorn (1995-05-11) 11 May 1995 (age 28)Turin, ItalyHeight1.91 m (6 ft 3 in)Turned pro2009PlaysRight-handed (two-handed backhand)CoachGipo ArbinoPrize moneyUS$ 5,846,312SinglesCareer record126–135 (48.3% in ATP Tour and Grand Slam main draw matches, and in Davis Cup)Career titles3Highest rankingNo. 21 (4 October 2021)Current rankingNo. 46 (29 Janu...

Psychological theory Appraisal theory is the theory in psychology that emotions are extracted from our evaluations (appraisals or estimates) of events that cause specific reactions in different people. Essentially, our appraisal of a situation causes an emotional, or affective, response that is going to be based on that appraisal.[1] An example of this is going on a first date. If the date is perceived as positive, one might feel happiness, joy, giddiness, excitement, and/or anticipat...

 

 

Chemical compound DoisynoestrolClinical dataTrade namesFenocyclin, Surestrine, SurestrylOther namesDiosynestrol; Fenocycline; Fenocyclin; Phenocyclin; RS-2874; Dehydrofolliculinic acid; cis-Bisdehydrodoisynolic acid 7-methyl ether; BDDA ME; NSC-56846; NSC-122041Routes ofadministrationBy mouthDrug classNonsteroidal estrogenIdentifiers IUPAC name 1-Ethyl-7-methoxy-2-methyl-3,4-dihydro-1H-phenanthrene-2-carboxylic acid CAS Number15372-34-6PubChem CID97911ChemSpider88384UNII2O436BJQ6TCompTox Dash...

 

 

Swedish film director (born 1938) Kay PollakKay Pollak in 2015.BornKay Gunnar Leopold Pollak (1938-05-21) 21 May 1938 (age 85)Gothenburg, SwedenNationalitySwedishOccupationFilm directorYears active1972-presentSpouseCarin Pollak ​ ​(m. 1986)​ Kay Gunnar Leopold Pollak (born 21 May 1938) is a Swedish film director. Career After a long break from film-making, he returned in 2004 with As It Is in Heaven (Så som i himmelen), a major box office success...

SMA Negeri 46 JakartaInformasiDidirikan10 Januari 1977 (sebagai filial dari SMA Negeri 18 Jakarta)JenisNegeriAkreditasiAKepala SekolahAchmad Safari, S.Pd., M.Si.Ketua KomiteNonie Indrayanto, S.T.Jurusan atau peminatanMIPA dan IPSRentang kelasX, XI, XII MIPA, XII IPSKurikulumKurikulum Merdeka dan Kurikulum 2013Jumlah siswa972AlamatLokasiJalan Masjid Darussalam Kav. 23-25, Blok-A, Gandaria Utara, Kebayoran Baru, Jakarta Selatan, DKI Jakarta, IndonesiaTel./Faks.021-7246695Koordina...

 

 

Football clubFK BorecFull nameFudbalski klub Borec VelesFounded1919; 105 years ago (1919)[1]GroundStadion Zoran PaunovCapacity2,000Coordinates41°43′10.0″N 21°46′29.7″E / 41.719444°N 21.774917°E / 41.719444; 21.774917ChairmanDimitar SazdovHead coachGoran BojcheskiLeagueMacedonian Third League (South)2022–23Macedonian Second League, 16th (relegated) Home colours Away colours FK Borec (Macedonian: ФК Борец) is a football club...

 

 

Disambiguazione – Se stai cercando altri significati, vedi Everything Sucks. Everything Sucks!Logo tratto dalla prima puntataTitolo originaleEverything Sucks! PaeseStati Uniti d'America Anno2018 Formatoserie TV Generedramma adolescenziale Stagioni1 Episodi10 Durata22-27 min (episodio) Lingua originaleinglese CreditiIdeatoreBen York Jones, Michael Mohan RegiaMichael Mohan, Ry Russo-Young Interpreti e personaggi Jahi Di'Allo Winston: Luke O’Neil Peyton Kennedy: Kate Messner Patch Darragh: ...

  لمعانٍ أخرى، طالع قصة مدينتين (توضيح). قصة مدينتينA Tale of Two Cities (بالإنجليزية) معلومات عامةالصنف الفني دراماتاريخ الصدور 1935مدة العرض 123 دقيقةاللغة الأصلية الإنجليزيةالعرض أبيض وأسود مأخوذ عن قصة مدينتين البلد الولايات المتحدةالطاقمالمخرج جاك كونواي[1][2] — روب...

 

 

Військово-музичне управління Збройних сил України Тип військове формуванняЗасновано 1992Країна  Україна Емблема управління Військово-музичне управління Збройних сил України — структурний підрозділ Генерального штабу Збройних сил України призначений для планува...

 

 

Indian Navy BandThe President Ram Nath Kovind, with the Indian Navy Band contingent for the Beating Retreat at the Rashtrapati Bhavan in January 2018.Active1945; 79 years ago (1945)Country IndiaBranch Indian NavySize125 membersPart ofINS KunjaliGarrison/HQBombayMarchJai Bharati (Victory to India)CommandersCurrentcommanderCommander Vijay Charles D'CruzNotablecommandersM.S.Neer, VSM;[1][2] Jerome Rodrigues[3][4]Commander Sebastian...

Classification system of the US Navy This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Navy Enlisted Classification – news · newspapers · books · scholar...

 

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: 2011–2013 Maldives political crisis – news · newspapers · books · scholar · JSTOR (February 2017) (Learn how and when to remove this message) 2011–2012 Maldives political crisisDateMay 2011 – March 2012 (with ongoing unrest and counter-protests)Location M...

 

 

إنغلبرت كونيغ   معلومات شخصية الميلاد 18 أكتوبر 1884(1884-10-18) الوفاة 10 سبتمبر 1951 (66 سنة)روما  مركز اللعب مهاجم الجنسية النمسا  المسيرة الاحترافية1 سنوات فريق م. (هـ.) 1905–1912 فيينا للكريكت وكرة القدم 1911–1913 Wiener AF [الإنجليزية]‏ 1913–1920 SV Schwechat [الإنجليزية]‏ المنتخب ال�...

جيمس بوزويل (بالإنجليزية: James Boswell)‏  جوشوا راينولدسPortrait of James Boswell1785 معلومات شخصية الميلاد 29 أكتوبر 1740 [1]  إدنبره، سكوتلندا الوفاة 19 مايو 1795 (54 سنة) [2][3][4][5][1]  لندن، انجلترا مواطنة إنجلترا العظمى الجنسية أسكتلندي الزوجة Margaret Montgomerie الأولاد ال...

 

 

English rock supergroup This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Ringo Starr & His All-Starr Band – news · newspapers · books · scholar · JSTOR (May 2023) (Learn how and when to remove this message) Ringo Starr & His All-Starr BandRingo Starr & His All-Starr Band performing in 2022. (left ...

 

 

Sociological concept used to study population The city of Atlanta, Georgia, was reported to have a daytime population of 676,431 in 2000, a 62.4% increase over the residential population of 416,474, making it the largest gain in daytime population in the country among cities with fewer than 500,000 residents.[1] Daytime population, also known as commuter-adjusted population,[2] is a demographic concept used in sociology referring to the number of people who are present in an ...

Volkswagen Caminhões e Ônibus Volkswagen Constellation 17.330Volkswagen Constellation 17.330 Constellation Hersteller: MAN Produktionszeitraum: seit 2002/05 Vorgängermodell: Volkswagen Titan Nachfolgemodell: keines Technische Daten Bauformen: Fahrgestell, diverse Aufbauten Motoren: Sechszylinder-Dieselmotor Leistung: bis zu 237 kW VW Constellation Titan Tractor 19.320 VW Constellation Der VW Constellation ist ein LKW der zu MAN Latin America gehörenden Marke Volkswagen Caminhões e ...

 

 

This article is about the local government area. For the suburb, see North Sydney, New South Wales. Local government area in New South Wales, AustraliaNorth Sydney CouncilNew South WalesLocation in Metropolitan SydneyCoordinates33°50′S 151°12′E / 33.833°S 151.200°E / -33.833; 151.200Population68,950 (2021 census)[1] • Density6,326/km2 (16,380/sq mi)Established29 July 1890 (1890-07-29)Area10.9 km2 (4.2 sq mi...