Polite number

A Young diagram representing visually a polite expansion 15 = 4 + 5 + 6

In number theory, a polite number is a positive integer that can be written as the sum of two or more consecutive positive integers. A positive integer which is not polite is called impolite.[1][2] The impolite numbers are exactly the powers of two, and the polite numbers are the natural numbers that are not powers of two.

Polite numbers have also been called staircase numbers because the Young diagrams which represent graphically the partitions of a polite number into consecutive integers (in the French notation of drawing these diagrams) resemble staircases.[3][4][5] If all numbers in the sum are strictly greater than one, the numbers so formed are also called trapezoidal numbers because they represent patterns of points arranged in a trapezoid.[6][7][8][9][10][11][12]

The problem of representing numbers as sums of consecutive integers and of counting the number of representations of this type has been studied by Sylvester,[13] Mason,[14][15] Leveque,[16] and many other more recent authors.[1][2][17][18][19][20][21][22][23] The polite numbers describe the possible numbers of sides of the Reinhardt polygons.[24]

Examples and characterization

The first few polite numbers are

3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, ... (sequence A138591 in the OEIS).

The impolite numbers are exactly the powers of two.[13] It follows from the Lambek–Moser theorem that the nth polite number is f(n + 1), where

Politeness

The politeness of a positive number is defined as the number of ways it can be expressed as the sum of consecutive integers. For every x, the politeness of x equals the number of odd divisors of x that are greater than one.[13] The politeness of the numbers 1, 2, 3, ... is

0, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 3, 0, 1, 2, 1, 1, 3, ... (sequence A069283 in the OEIS).

For instance, the politeness of 9 is 2 because it has two odd divisors, 3 and 9, and two polite representations

9 = 2 + 3 + 4 = 4 + 5;

the politeness of 15 is 3 because it has three odd divisors, 3, 5, and 15, and (as is familiar to cribbage players)[25] three polite representations

15 = 4 + 5 + 6 = 1 + 2 + 3 + 4 + 5 = 7 + 8.

An easy way of calculating the politeness of a positive number by decomposing the number into its prime factors, taking the powers of all prime factors greater than 2, adding 1 to all of them, multiplying the numbers thus obtained with each other and subtracting 1. For instance 90 has politeness 5 because ; the powers of 3 and 5 are respectively 2 and 1, and applying this method .

Construction of polite representations from odd divisors

To see the connection between odd divisors and polite representations, suppose a number x has the odd divisor y > 1. Then y consecutive integers centered on x/y (so that their average value is x/y) have x as their sum:

Some of the terms in this sum may be zero or negative. However, if a term is zero it can be omitted and any negative terms may be used to cancel positive ones, leading to a polite representation for x. (The requirement that y > 1 corresponds to the requirement that a polite representation have more than one term; applying the same construction for y = 1 would just lead to the trivial one-term representation x = x.) For instance, the polite number x = 14 has a single nontrivial odd divisor, 7. It is therefore the sum of 7 consecutive numbers centered at 14/7 = 2:

14 = (2 − 3) + (2 − 2) + (2 − 1) + 2 + (2 + 1) + (2 + 2) + (2 + 3).

The first term, −1, cancels a later +1, and the second term, zero, can be omitted, leading to the polite representation

14 = 2 + (2 + 1) + (2 + 2) + (2 + 3) = 2 + 3 + 4 + 5.

Conversely, every polite representation of x can be formed from this construction. If a representation has an odd number of terms, x/y is the middle term, while if it has an even number of terms and its minimum value is m it may be extended in a unique way to a longer sequence with the same sum and an odd number of terms, by including the 2m − 1 numbers −(m − 1), −(m − 2), ..., −1, 0, 1, ..., m − 2, m − 1. After this extension, again, x/y is the middle term. By this construction, the polite representations of a number and its odd divisors greater than one may be placed into a one-to-one correspondence, giving a bijective proof of the characterization of polite numbers and politeness.[13][26] More generally, the same idea gives a two-to-one correspondence between, on the one hand, representations as a sum of consecutive integers (allowing zero, negative numbers, and single-term representations) and on the other hand odd divisors (including 1).[15]

Another generalization of this result states that, for any n, the number of partitions of n into odd numbers having k distinct values equals the number of partitions of n into distinct numbers having k maximal runs of consecutive numbers.[13][27][28] Here a run is one or more consecutive values such that the next larger and the next smaller consecutive values are not part of the partition; for instance the partition 10 = 1 + 4 + 5 has two runs, 1 and 4 + 5. A polite representation has a single run, and a partition with one value d is equivalent to a factorization of n as the product d ⋅ (n/d), so the special case k = 1 of this result states again the equivalence between polite representations and odd factors (including in this case the trivial representation n = n and the trivial odd factor 1).

Trapezoidal numbers

If a polite representation starts with 1, the number so represented is a triangular number

Otherwise, it is the difference of two nonconsecutive triangular numbers

This second case is called a trapezoidal number.[12] One can also consider polite numbers that aren't trapezoidal. The only such numbers are the triangular numbers with only one nontrivial odd divisor, because for those numbers, according to the bijection described earlier, the odd divisor corresponds to the triangular representation and there can be no other polite representations. Thus, non-trapezoidal polite number must have the form of a power of two multiplied by an odd prime. As Jones and Lord observe,[12] there are exactly two types of triangular numbers with this form:

  1. the even perfect numbers 2n − 1(2n − 1) formed by the product of a Mersenne prime 2n − 1 with half the nearest power of two, and
  2. the products 2n − 1(2n + 1) of a Fermat prime 2n + 1 with half the nearest power of two.

(sequence A068195 in the OEIS). For instance, the perfect number 28 = 23 − 1(23 − 1) and the number 136 = 24 − 1(24 + 1) are both this type of polite number. It is conjectured that there are infinitely many Mersenne primes, in which case there are also infinitely many polite numbers of this type.

References

  1. ^ a b Adams, Ken (March 1993), "How polite is x?", The Mathematical Gazette, 77 (478): 79–80, doi:10.2307/3619263, JSTOR 3619263, S2CID 171530924.
  2. ^ a b Griggs, Terry S. (December 1991), "Impolite Numbers", The Mathematical Gazette, 75 (474): 442–443, doi:10.2307/3618630, JSTOR 3618630, S2CID 171681914.
  3. ^ Mason, John; Burton, Leone; Stacey, Kaye (1982), Thinking Mathematically, Addison-Wesley, ISBN 978-0-201-10238-3.
  4. ^ Stacey, K.; Groves, S. (1985), Strategies for Problem Solving, Melbourne: Latitude.
  5. ^ Stacey, K.; Scott, N. (2000), "Orientation to deep structure when trying examples: a key to successful problem solving", in Carillo, J.; Contreras, L. C. (eds.), Resolucion de Problemas en los Albores del Siglo XXI: Una vision Internacional desde Multiples Perspectivas y Niveles Educativos (PDF), Huelva, Spain: Hergue, pp. 119–147, archived from the original (PDF) on 2008-07-26.
  6. ^ Gamer, Carlton; Roeder, David W.; Watkins, John J. (1985), "Trapezoidal numbers", Mathematics Magazine, 58 (2): 108–110, doi:10.2307/2689901, JSTOR 2689901.
  7. ^ Jean, Charles-É. (March 1991), "Les nombres trapézoïdaux" (French), Bulletin de l'AMQ: 6–11.
  8. ^ Haggard, Paul W.; Morales, Kelly L. (1993), "Discovering relationships and patterns by exploring trapezoidal numbers", International Journal of Mathematical Education in Science and Technology, 24 (1): 85–90, doi:10.1080/0020739930240111.
  9. ^ Feinberg-McBrian, Carol (1996), "The case of trapezoidal numbers", Mathematics Teacher, 89 (1): 16–24, doi:10.5951/MT.89.1.0016.
  10. ^ Smith, Jim (1997), "Trapezoidal numbers", Mathematics in School, 5: 42.
  11. ^ Verhoeff, T. (1999), "Rectangular and trapezoidal arrangements", Journal of Integer Sequences, 2: 16, Bibcode:1999JIntS...2...16V, Article 99.1.6.
  12. ^ a b c Jones, Chris; Lord, Nick (1999), "Characterising non-trapezoidal numbers", The Mathematical Gazette, 83 (497): 262–263, doi:10.2307/3619053, JSTOR 3619053, S2CID 125545112.
  13. ^ a b c d e Sylvester, J. J.; Franklin, F (1882), "A constructive theory of partitions, arranged in three acts, an interact and an exodion", American Journal of Mathematics, 5 (1): 251–330, doi:10.2307/2369545, JSTOR 2369545. In The collected mathematical papers of James Joseph Sylvester (December 1904), H. F. Baker, ed. Sylvester defines the class of a partition into distinct integers as the number of blocks of consecutive integers in the partition, so in his notation a polite partition is of first class.
  14. ^ Mason, T. E. (1911), "On the representations of a number as a sum of consecutive integers", Proceedings of the Indiana Academy of Science: 273–274.
  15. ^ a b Mason, Thomas E. (1912), "On the representation of an integer as the sum of consecutive integers", American Mathematical Monthly, 19 (3): 46–50, doi:10.2307/2972423, JSTOR 2972423, MR 1517654.
  16. ^ Leveque, W. J. (1950), "On representations as a sum of consecutive integers", Canadian Journal of Mathematics, 2: 399–405, doi:10.4153/CJM-1950-036-3, MR 0038368, S2CID 124093945,
  17. ^ Pong, Wai Yan (2007), "Sums of consecutive integers", College Math. J., 38 (2): 119–123, arXiv:math/0701149, Bibcode:2007math......1149P, doi:10.1080/07468342.2007.11922226, MR 2293915, S2CID 14169613.
  18. ^ Britt, Michael J. C.; Fradin, Lillie; Philips, Kathy; Feldman, Dima; Cooper, Leon N. (2005), "On sums of consecutive integers", Quart. Appl. Math., 63 (4): 791–792, doi:10.1090/S0033-569X-05-00991-1, MR 2187932.
  19. ^ Frenzen, C. L. (1997), "Proof without words: sums of consecutive positive integers", Math. Mag., 70 (4): 294, doi:10.1080/0025570X.1997.11996560, JSTOR 2690871, MR 1573264.
  20. ^ Guy, Robert (1982), "Sums of consecutive integers" (PDF), Fibonacci Quarterly, 20 (1): 36–38, doi:10.1080/00150517.1982.12430026, Zbl 0475.10014.
  21. ^ Apostol, Tom M. (2003), "Sums of consecutive positive integers", The Mathematical Gazette, 87 (508): 98–101, doi:10.1017/S002555720017216X, JSTOR 3620570, S2CID 125202845.
  22. ^ Prielipp, Robert W.; Kuenzi, Norbert J. (1975), "Sums of consecutive positive integers", Mathematics Teacher, 68 (1): 18–21, doi:10.5951/MT.68.1.0018.
  23. ^ Parker, John (1998), "Sums of consecutive integers", Mathematics in School, 27 (2): 8–11.
  24. ^ Mossinghoff, Michael J. (2011), "Enumerating isodiametric and isoperimetric polygons", Journal of Combinatorial Theory, Series A, 118 (6): 1801–1815, doi:10.1016/j.jcta.2011.03.004, MR 2793611
  25. ^ Graham, Ronald; Knuth, Donald; Patashnik, Oren (1988), "Problem 2.30", Concrete Mathematics, Addison-Wesley, p. 65, ISBN 978-0-201-14236-5.
  26. ^ Vaderlind, Paul; Guy, Richard K.; Larson, Loren C. (2002), The inquisitive problem solver, Mathematical Association of America, pp. 205–206, ISBN 978-0-88385-806-6.
  27. ^ Andrews, G. E. (1966), "On generalizations of Euler's partition theorem", Michigan Mathematical Journal, 13 (4): 491–498, doi:10.1307/mmj/1028999609, MR 0202617.
  28. ^ Ramamani, V.; Venkatachaliengar, K. (1972), "On a partition theorem of Sylvester", The Michigan Mathematical Journal, 19 (2): 137–140, doi:10.1307/mmj/1029000844, MR 0304323.

Read other articles:

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Codashop adalah sebuah platform top up item permainan daring dan produk digital. Codashop kini telah memiliki lebih dari 7 juta pengguna aktif setiap bulan yang tersebar di Asia Tenggara. Jumlah transaksi harian tertinggi Codashop mencapai di atas 1,5 ...

 

Chevrolet Silverado/GMC SierraInformasiProdusenGeneral MotorsJuga disebutGMC Sierra Chevrolet Cheyenne (Meksiko)VIA Vtrux Truck Chevrolet C/K (Korea Selatan)Masa produksi1998–sekarangPerakitanAS: Flint, Michigan Roanoke, Indiana Pontiac, Michigan Springfield, Ohio [1] Meksiko: Silao, Meksiko Kanada: Oshawa, Ontario,Bodi & rangkaKelasPikap ukuran penuhBentuk kerangka2-pintu regular cab 3-pintu extended cab 4-pintu extended cab 4-pintu crew cab DuallyTata letakMesin depa...

 

Perangko Filipina tahun 2011 edisi olahraga Arnis Arnis adalah salah satu seni bela diri yang berasal dari Filipina, di samping dua penamaan yang lain yaitu kali dan eskrima, keseluruhannya tergabung dalam Filipino Martial Arts(FMA) yaitu seni beladiri yang mempelajari senjata dan tangan kosong yang berdasar pada seni bela diri bertongkat. Lihat pula Eskrima Kali Artikel bertopik olahraga ini adalah sebuah rintisan. Anda dapat membantu Wikipedia dengan mengembangkannya.lbs

Kesultanan Gorontaloهولونتالو Pohala'a Hulontalo Kerajaan Gorontalo1385–1878 Surat Sultan dari Kesultanan Gorontalo tahun 1791 Cap Surat Resmi Kesultanan Gorontalo Lukisan Kawasan Benteng dan Istana Kesultanan Gorontalo tahun 1821. Kawasan Kesultanan ini dibangun oleh Sultan Botutihe tahun 1738Wilayah kekuasaan dan pengaruh Kesultanan Gorontalo yang meluas hingga ke tomini-bocht di Sausu dan Teluk Tomini tahun 1821Ibu kotaBiawuBahasa yang umum digunakanBahasa GorontaloAgama Su...

 

العلاقات النمساوية الكرواتية النمسا كرواتيا   النمسا   كرواتيا تعديل مصدري - تعديل   العلاقات النمساوية الكرواتية هي العلاقات الثنائية التي تجمع بين النمسا وكرواتيا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقا...

 

العلاقات الإماراتية الناوروية الإمارات العربية المتحدة ناورو   الإمارات العربية المتحدة   ناورو تعديل مصدري - تعديل   العلاقات الإماراتية الناوروية هي العلاقات الثنائية التي تجمع بين الإمارات العربية المتحدة وناورو.[1][2][3][4][5] مقارنة بين ...

This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (March 2011) (Learn how and when to remove this template message) Chevalier Guard Regiment— III —Chevalier Guard Regiment in the Battle of AusterlitzActive1800-1918CountryRussian EmpireBranchRussian Imperial GuardTypeHeavy cavalrySizeRegimentPart of1st Guard Cavalry divisionGarrison/HQSt. PetersburgMili...

 

Народы моря (nȝ ḫȝt.w n pȝ ym) иероглифами «Народы моря» — группа средиземноморских народов, начавших миграцию в условиях «катастрофы бронзового века», в XIII веке до н. э., к границам Египта и государства хеттов, предположительно из региона Эгейского моря (Балканы и Ма...

 

Athletics Federation of São Tomé and PríncipeSportAthleticsFounded1980 (1980)AffiliationIAAFAffiliation date1981 (1981)Regional affiliationCAAPresidentAntónio MenezesSecretaryFilipe Andrade Gomes The Athletics Federation of São Tomé and Príncipe (Federação Santomense de Atletismo) is the governing body for the sport of athletics in São Tomé and Príncipe. Current president is António Menezes.[1] History The Federação Santomense de Atletismo was founded in 1980,...

Cet article est une ébauche concernant une chronologie ou une date et le Canada. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. 2006 au Nouveau-Brunswick - 2007 au Nouveau-Brunswick - 2008 au Nouveau-Brunswick - 2009 au Nouveau-Brunswick - 2010 au Nouveau-Brunswick 2006 au Québec - 2007 au Québec - 2008 au Québec - 2009 au Québec - 2010 au Québec 2006 par pays en Amérique - 2007 par pays en Amérique - 2...

 

Distrik XVI Humbang HabinsaranGereja HKBP Sabungan Siborongborong, Ressort Siborongborong, Gereja induk (sabungan) Distrik XVI Humbang Habinsaran2°12′59″N 98°58′27″E / 2.216356°N 98.974187°E / 2.216356; 98.974187KantorJl. Tugu no. 2, Siaro, Siborongborong, Kabupaten Tapanuli UtaraWilayah pelayananKabupaten Tapanuli Utara (Kecamatan Siborongborong, Parmonangan, Pagaran, Muara) Kabupaten Humbang Hasundutan (Kecamatan Lintong Nihuta, Paranginan)Ressort28 [...

 

Peter Løvenkrands Løvenkrands bermain untuk Newcastle UnitedInformasi pribadiNama lengkap Peter Rosenkrands LøvenkrandsTanggal lahir 29 Januari 1980 (umur 44)Tempat lahir Hørsholm, DenmarkTinggi 1,81 m (5 ft 11+1⁄2 in)[1]Posisi bermain PenyerangKarier junior1985–1997 Lillerød IFKarier senior*Tahun Tim Tampil (Gol)1998–2000 Akademisk Boldklub 32 (7)2000–2006 Rangers 129 (37)2006–2009 Schalke 04 44 (6)2008–2009 Schalke 04 II 3 (2)2009 Newcastle ...

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要編修,以確保文法、用詞、语气、格式、標點等使用恰当。 (2013年8月6日)請按照校對指引,幫助编辑這個條目。(幫助、討論) 此條目剧情、虛構用語或人物介紹过长过细,需清理无关故事主轴的细节、用語和角色介紹。 (2020年10月6日)劇情、用語和人物介紹都只是用於了解故事主軸,輔助�...

 

1971 Austrian legislative election ← 1970 10 October 1971 1975 → All 183 seats in the National Council of Austria92 seats needed for a majority   First party Second party Third party   Leader Bruno Kreisky Hermann Withalm [de] Friedrich Peter Party SPÖ ÖVP FPÖ Last election 48.42%, 81 seats 44.69%, 78 seats 5.52%, 6 seats Seats won 93 80 10 Seat change 12 2 4 Popular vote 2,280,168 1,964,713 286,473 Percentage 50.04% 43...

 

Spanish footballer (born 2003) In this Spanish name, the first or paternal surname is Torre and the second or maternal family name is Carral. Pablo Torre Torre training with Barcelona in 2022Personal informationFull name Pablo Torre CarralDate of birth (2003-04-03) 3 April 2003 (age 21)Place of birth Soto de la Marina, SpainHeight 1.73 m (5 ft 8 in)Position(s) Attacking midfielderTeam informationCurrent team Girona(on loan from Barcelona)Number 18Youth career2012�...

  لمعانٍ أخرى، طالع إبيروس (توضيح). إبيروس (دولة قديمة)معلومات عامةالبداية القرن 5 ق.م حدث شارك فيه الحرب البيروسية اللغة الرسمية اليونانية الدُّورِيَّة المكان إبيروس حل محله مقدونيا (146 ق.م) تاريخ الحل أو الإلغاء أو الهدم 146 ق.م صالحة في فترة كلاسيكية قديمة تعديل - تعديل �...

 

Sports season2021–22 curling seasonSportCurlingSeasons← 2020–212022–23 → The 2021–22 curling season began in June 2021 and ended in May 2022. Note: In events with two genders, the men's tournament winners will be listed before the women's tournament winners. World Curling Federation events Source:[1] Championships Event Gold Silver Bronze European Curling Championships[2] Geneva, Switzerland, Sep. 12–17 C M[3]  Slovenia (Čulić)  Belg...

 

Provincie Noord-Brabant Provinsi Brabant Utara Bendera Lambang Map: Provinsi Brabant Utara di Belanda Ibu kota 's-Hertogenbosch Kota besar Eindhoven Komisaris Raja Ina Adema (VVD) Agama (2005) Protestan 6%Katolik 57% Muslim 4.5% Luas • Darat • Air  4,902 km² (ke-2)181 km² Populasi (2023) • Total • Kepadatan 2,626,000 (ke-3)536/km² (ke-4) Lagu kebangsaan - ISO NL-NB Situs Web Resmi www.brabant.nl Brabant Utara (Belanda: Noord-Brabantcode: nl ...

Port in United StatesPort of HoustonAerial view of the Greens Point Industrial Park at the portLogo of the Port of Houston AuthorityClick on the map for a fullscreen viewLocationCountryUnited StatesLocationHouston (Texas, USA)Coordinates29°43′N 95°15′W / 29.717°N 95.250°W / 29.717; -95.250[1]UN/LOCODEUSHOU[2]DetailsOperated byPort of Houston AuthorityOwned byCity of HoustonType of harbourArtificial / naturalNumber of cargo container terminals2Nu...

 

Protestant tradition in America For the form of church organization in which each congregation governs itself, see Congregationalist polity. The steeple of North Church, a historic Congregational church in Portsmouth, New Hampshire Part of a series onReformed ChristianityReformation Wall in Geneva, featuring prominent Reformed theologians William Farel, John Calvin, Theodore Beza, and John Knox Background Christianity Reformation Protestantism Theology Theology of John Calvin Covenant theolog...