It is often part of the G proteinsignaling cascade that is activated by low intracellular calcium levels and inhibited by high intracellular calcium levels. In response to calcium levels, guanylate cyclase synthesizes cGMP from GTP. cGMP keeps cGMP-gated channels open, allowing for the entry of calcium into the cell.[2]
Guanylate cyclase is found in the retina (RETGC) and modulates visual phototransduction in rods and cones. It is part of the calcium negative feedback system that is activated in response to the hyperpolarization of the photoreceptors by light. This causes less intracellular calcium, which stimulates guanylate cyclase-activating proteins (GCAPs). Studies have shown that cGMP synthesis in cones is about 5-10 times higher than it is in rods, which may play an important role in modulating cone adaption to light.[3] In addition, studies have shown that zebrafish express a higher number of GCAPs than mammals, and that zebrafish GCAPs can bind at least three calcium ions.[4]
Soluble guanylate cyclase contains a molecule of heme, and is activated primarily by the binding of nitric oxide (NO) to that heme.[6] sGC is primary receptor for NO a gaseous, membrane-soluble neurotransmitter. sGC expression has been shown to be highest in the striatum compared to other brain regions and has been explored as a possible candidate for restoring striatal dysfunction in Parkinson's disease. sGC acts as an intracellular intermediary for regulating dopamine and glutamate. Upregulation, which creates neuronal sensitivity, of the cGMP in a dopamine-depleted striatum has been associated with the symptoms of Parkinson's. Increased intracellular cGMP has been shown to contribute to excessive neuron excitability and locomotor activity. Activation of this pathway can also stimulate presynaptic glutamate release and cause an upregulation of AMPA receptors postsynaptically.[7]
Membrane bound guanylate cyclases include an external ligand-binding domain (e.g., for peptide hormones such as BNP and ANP), a transmembrane domain, and an internal catalytic domain homologous to adenylyl cyclases.[8] Recently, a directly light-gated guanylate cyclase has been discovered in an aquatic fungus.[9][10]
In the mammalian retina, two forms of guanylate cyclase have been identified, each encoded by separate genes; RETGC-1 and RETGC-2. RETGC-1 has been found to be expressed in higher levels in cones compared to rod cells. Studies have also shown that mutations in the RETGC-1 gene can lead to cone-rod dystrophy by disrupting the phototransduction processes.
Mutations
Cone dystrophy (COD) is a retinal degradation of photoreceptor function wherein cone function is lost at the onset of the dystrophy but rod function is preserved until almost the end. COD has been linked to several genetic mutations including mutations in the guanylate cyclase activator 1A (GUCA1A) and guanylate cyclase 2D (GUY2D) among other enzymes. To be specific, GUY2D codes for RETGC-1, which is involved in cone adaptation and photoreceptor sensitivity by synthesizing cGMP. Low concentrations of calcium cause the dimerization of RETGC-1 proteins through stimulation from guanylate cyclase-activating proteins (GCAP). This process happens at amino acids 817-857, and mutations in this region increase RETGC-1 affinity for GCAP. This works to alter the calcium sensitivity of the neuron by allowing mutant RETGC-1 to be activated by GCAP at higher calcium levels than the wild-type. Because RETGC-1 produces cGMP, which keeps cyclic nucleotide-gated channels open allowing the influx of calcium, this mutation causes extremely high intracellular calcium levels. Calcium, which plays many roles in the cell and is tightly regulated, disrupts the membrane when it appears in excess. Also, calcium is linked to apoptosis by causing the release of cytochrome c. Therefore, mutations in the RETGC-1 can cause COD by increasing intracellular calcium levels and stimulating cone photoreceptor death.[11]
^ abMartin, Emil; Berka, Vladimir; Tsai, Ah-Lim; Murad, Ferid (2005). "Soluble Guanylyl Cyclase: The Nitric Oxide Receptor". Methods in Enzymology. Vol. 396. Elsevier. pp. 478–492. doi:10.1016/s0076-6879(05)96040-0. ISBN978-0-12-182801-1. ISSN0076-6879. PMID16291255. Soluble guanylyl cyclase is recognized as the most sensitive physiologic receptor for nitric oxide. Binding of nitric oxide to the heme moiety of the cyclase induces its capacity to synthesize the second messenger cGMP.
^Gong R, Ding C, Hu J, Lu Y, Liu F, Mann E, Xu F, Cohen M, Luo M (2011). "Role for the membrane receptor guanylate cyclase-c in attention deficiency and hyperactive behavior". {{cite journal}}: Cite journal requires |journal= (help)