杰弗里·辛顿

杰弗里·辛顿2024年诺贝尔物理学奖得主
Geoffrey Hinton
CC FRS FRSC
Hinton in 2024
出生Geoffrey Everest Hinton
(1947-12-06) 1947年12月6日77歲)[10]
 英国英格蘭倫敦温布尔登
母校劍橋大學BA
愛丁堡大學PhD
知名于反向傳播算法的應用
玻爾茲曼機
深度學習
膠囊神經網路英语Capsule neural network
奖项美国人工智能协会会士英语AAAI Fellow(1990)
魯梅爾哈特獎英语Rumelhart Prize(2001)
IJCAI優秀研究獎英语IJCAI Award for Research Excellence(2005)
IEEE弗蘭克·羅森布拉特獎英语IEEE Frank Rosenblatt Award(2014)
詹姆斯·克拉克·馬克士威獎章(20016)
BBVA基金會知識前沿獎英语BBVA Foundation Frontiers of Knowledge Award(2016)
圖靈獎(2018)
阿斯圖里亞斯親王獎(2022)
皇家奖章(2022)
诺贝尔物理学奖(2024)
网站www.cs.toronto.edu/~hinton/
科学生涯
研究领域機器學習
神經網路
人工智慧
認知科學
物體識別英语Outline of object recognition[1]
机构多倫多大學
Google
卡内基·梅隆大学
倫敦大學學院
聖地牙哥加利福尼亞大學
论文Relaxation and its role in vision(1977年)
博士導師克里斯托弗·龍格-希金斯英语Christopher Longuet-Higgins[2][3][4]
博士生理查德·塞梅爾英语Richard Zemel[5]
布倫丹·傅萊英语Brendan Frey[6]
拉德福德·M·尼爾英语Radford M. Neal[7]
鄭宇懷
魯斯·薩拉赫丁諾夫英语Russ Salakhutdinov[8]
伊爾亞·蘇茨克維[9]
其他著名學生楊立昆博士後
彼得·達揚英语Peter Dayan博士後
馬克斯·威靈英语Max Welling博士後
祖賓·加拉馬尼英语Zoubin Ghahramani博士後
艾力克斯·格雷夫斯博士後

杰弗里·埃弗里斯特·辛顿FRS(英語:Geoffrey Everest Hinton,1947年12月6日),又译杰弗里·欣顿[11]英国出生的加拿大计算机学家心理学家多伦多大学教授。以其在類神經網路方面的贡献闻名。辛顿是反向传播算法和对比散度算法(Contrastive Divergence)的发明人之一,也是深度学习的积极推动者[12],被誉为“深度学习教父”[13]

辛顿因在深度学习方面的贡献与约书亚·本希奥杨立昆共同获得2018年的图灵奖[14]。2024年,辛顿与约翰·霍普菲尔德共同获得诺贝尔物理学奖[15]

生平

辛顿于1970年在剑桥大学获得实验心理学学士学位,后于1978年在爱丁堡大学获得人工智能博士学位。毕业后曾在萨塞克斯大学加州大学圣迭戈分校、剑桥大学、卡内基梅隆大学伦敦大学学院工作。他是盖茨比计算神经科学中心的创始人,目前担任多伦多大学计算机科学系教授。辛顿是机器学习领域的加拿大首席学者,也是加拿大高等研究院赞助的“神经计算和自适应感知”项目的领导者。辛顿在2013年3月加入Google,同时Google并购了他创办的DNNresearch公司[16]

研究兴趣

关于辛顿工作的浅显解释可以参考他在1992年9月和1993年10月于《科学美国人》发表的两篇科普文章。他研究了使用神经网络进行机器学习、记忆、感知和符号处理的方法,并在这些领域发表了超过200篇论文。他是将反向传播算法引入多层神经网络训练的学者之一。他与大卫·阿克利特里·赛杰诺维斯基一同发明了波尔兹曼机。他对于神经网络的其它贡献包括分散表示(distributed representation)、时延神经网络、专家混合系统(mixtures of experts)、亥姆霍兹机(Helmholtz machines)等。辛顿当前的工作是处理丰富传感器输入的神经网络无监督学习。

获奖

辛顿是鲁梅哈特奖的首位获奖者,1998年当选皇家学会会士[17]

辛顿获得了2005年IJCAI杰出学者奖终生成就奖,同时也是2011年赫茨伯格加拿大科学和工程金奖获得者[18]

2024年與约翰·霍普菲尔德共同獲得诺贝尔物理學奖,表彰其在機器學習與人工智慧上,做出的基礎發明及創新。[12]

轶事

辛顿是逻辑学家乔治·布尔与數學家和教育家瑪麗·埃佛勒斯·布爾的曾曾孙,布尔的工作最终成为了现代电子计算机的基础。与此同时,辛顿也是外科医生和作家詹姆士·辛顿的后裔[19]

他被譽為「AI教父」。2023年5月, 他稱其後悔研發人工智能,擔心人工智能會為世界帶來嚴重危害。[20]

参考资料

  1. ^ Google学术搜索索引的杰弗里·辛顿出版物
  2. ^ 杰弗里·辛顿數學譜系計畫的資料。
  3. ^ Geoffrey E. Hinton's Academic Genealogy. [2014-07-22]. (原始内容存档于2017-03-23). 
  4. ^ Gregory, R. L.; Murrell, J. N. Hugh Christopher Longuet-Higgins. 11 April 1923 -- 27 March 2004: Elected FRS 1958. Biographical Memoirs of Fellows of the Royal Society. 2006, 52: 149–166. doi:10.1098/rsbm.2006.0012可免费查阅. 
  5. ^ Zemel, Richard Stanley. A minimum description length framework for unsupervised learning (PhD论文). University of Toronto. 1994. OCLC 222081343. ProQuest 304161918. 
  6. ^ Frey, Brendan John. Bayesian networks for pattern classification, data compression, and channel coding (PhD论文). University of Toronto. 1998. OCLC 46557340. ProQuest 304396112. 
  7. ^ Neal, Radford. Bayesian learning for neural networks (PhD论文). University of Toronto. 1995. OCLC 46499792. ProQuest 304260778. 
  8. ^ Salakhutdinov, Ruslan. Learning deep generative models (PhD论文). University of Toronto. 2009. ISBN 9780494610800. OCLC 785764071. ProQuest 577365583. 
  9. ^ Sutskever, Ilya. Training Recurrent Neural Networks (PhD论文). University of Toronto. 2013. OCLC 889910425. ProQuest 1501655550. 
  10. ^ Anon (2015) Hinton, Prof. Geoffrey Everest需要付费订阅. 英国名人录. ukwhoswho.com online Oxford University Press (布盧姆斯伯里出版公司旗下A & C Black).  需要订阅或英国公共图书馆会员资格 doi:10.1093/ww/9780199540884.013.20261 需付费查阅
  11. ^ 两名科学家因机器学习方面的贡献分享2024年诺贝尔物理学奖. 新华网. 2024-10-08. 
  12. ^ 12.0 12.1 Daniela Hernandez. The Man Behind the Google Brain: Andrew Ng and the Quest for the New AI. Wired. 7 May 2013 [10 May 2013]. (原始内容存档于2014-03-29). 
  13. ^ How U of T's 'godfather' of deep learning is reimagining AI. University of Toronto News. [2018-12-28]. (原始内容存档于2019-04-06) (英语). 
  14. ^ Baraniuk, Chris. British-born AI expert wins Turing Award. 2019-03-27 [2019-03-27]. (原始内容存档于2019-03-27) (英国英语). 
  15. ^ The Nobel Prize in Physics 2024. NobelPrize.org. [2024-10-08]. (原始内容存档于2024-10-08) (美国英语). 
  16. ^ U of T neural networks start-up acquired by Google (新闻稿). Toronto, ON. 2013-03-12 [2013-03-13]. (原始内容存档于2019-10-08). 
  17. ^ Fellows of the Royal Society. The Royal Society. [2013-03-14]. (原始内容存档于2015-06-26). 
  18. ^ Artificial intelligence scientist gets M prize. CBC News. 2011-02-14 [2014-07-22]. (原始内容存档于2011-02-17). 
  19. ^ The Isaac Newton of logic. [2014-07-22]. (原始内容存档于2021-01-16). 
  20. ^ Metz, Cade. ‘The Godfather of A.I.’ Leaves Google and Warns of Danger Ahead. The New York Times. 2023-05-01 [2023-05-02]. ISSN 0362-4331. (原始内容存档于2023-05-01) (美国英语). 

外部链接