Miedź

Miedź
nikiel ← miedź → cynk
Wygląd
czerwonobrunatny
Miedź
Widmo emisyjne miedzi
Widmo emisyjne miedzi
Ogólne informacje
Nazwa, symbol, l.a.

miedź, Cu, 29
(łac. cuprum)

Grupa, okres, blok

11, 4, d

Stopień utlenienia

0, I, II, III, IV

Właściwości metaliczne

metal przejściowy

Właściwości tlenków

średnio zasadowe

Masa atomowa

63,546 ± 0,003[3][a]

Stan skupienia

stały

Gęstość

8920 kg/m³

Temperatura topnienia

1084,62 °C[1]

Temperatura wrzenia

2562 °C[1]

Numer CAS

7440-50-8

PubChem

23978

Jeżeli nie podano inaczej, dane dotyczą
warunków normalnych (0 °C, 1013,25 hPa)

Miedź (Cu, łac. cuprum) – pierwiastek chemiczny z grupy metali przejściowych. Nazwa łacińska (a za nią w innych językach, w tym angielskim) pochodzi od Cypru, gdzie w starożytności wydobywano miedź. Początkowo nazywano ją „metalem cypryjskim” (cyprum aes), a następnie cuprum. Ma 26 izotopów z przedziału mas 55–80. Trwałe są dwa: 63 i 65.

Właściwości

Fizyczne

Miedziany krążek o czystości ⩾ 99,95% otrzymany metodą ciągłego odlewu, wytrawiony powierzchniowo dla uwidocznienia struktury wewnętrznej

Miedź ma gęstość 8,96 g/cm³ i temperaturę topnienia 1084,62 °C. Po wytopie i oczyszczeniu jest miękkim metalem o bardzo dobrym przewodnictwie cieplnym i elektrycznym. Miedź, srebro i złoto, leżąc w 11 grupie układu okresowego, mają pewne wspólne właściwości: mają jeden elektron na orbitalu s powłoki walencyjnej ponad zapełnioną powłoką elektronową d oraz odznaczają się wysoką plastycznością i przewodnictwem elektrycznym. Wypełnione powłoki d w tych pierwiastkach nie wnoszą zbyt dużego wkładu w oddziaływania międzyatomowe, które w wiązaniach metalicznych są zdominowane przez elektrony powłok s. W przeciwieństwie do metali z niepełnymi powłokami d, wiązanie metaliczne w miedzi nie ma charakteru kowalencyjnego i jest względnie słabe. Wyjaśnia to niską twardość i wysoką plastyczność kryształów miedzi[4]. Miedź można przerabiać plastycznie na zimno i na gorąco, ale w przypadku przeróbki na zimno następuje utwardzenie metalu (w wyniku zgniotu), które usuwa się przez wyżarzenie rekrystalizujące (w temp. 400–600 °C). Przeróbkę plastyczną na gorąco przeprowadza się w temp. 650–800 °C. W skali makroskopowej, wytworzenie podłużnych wad sieci krystalicznej, jak granice pomiędzy ziarnami czy zaburzenia przepływu pod przyłożoną siłą, zwiększa twardość miedzi. Z tego powodu miedź dostępna w handlu występuje w drobnoziarnistej polikrystalicznej formie, która ma większą odporność mechaniczną niż forma monokrystaliczna[5].

Niska twardość miedzi częściowo tłumaczy jej wysoką przewodność elektryczną (59,6⋅106 S/m) i przewodność cieplną, które są drugie pod względem wielkości wśród czystych metali w temperaturze pokojowej[6]. Jest to spowodowane tym, że oporność w przenoszeniu elektronów w metalach pochodzi głównie od rozpraszania elektronów na wibracjach cieplnych sieci krystalicznej, które w metalach miękkich są stosunkowo słabe[5]. Maksymalna dopuszczalna gęstość prądu dla miedzi w powietrzu wynosi w przybliżeniu 3,1⋅106 A/m² pola przekroju poprzecznego, powyżej tej wartości zaczyna się nadmiernie nagrzewać[7]. Tak jak w przypadku innych metali, jeśli miedź jest w kontakcie z innymi metalami, zachodzi korozja galwaniczna[8]. Wraz z osmem (niebieskawy), cezem (żółty) i złotem (żółty), miedź jest jednym z czterech metali, których naturalny kolor jest inny niż szary lub srebrny. Czysta miedź jest pomarańczowoczerwona, na powietrzu ciemnieje wskutek utleniania. Charakterystyczny kolor pochodzi od przejść elektronów z podpowłoki 3d na nie w pełni zapełnioną ostatnią podpowłokę 4s, dzięki energii fotonów z zakresu światła widzialnego, odpowiadającej barwie fioletowej i błękitnej – ich pochłonięcie powoduje powstanie obserwowanej wypadkowej czerwono-pomarańczowej barwy[4].

Chemiczne

Starożytna sztabka miedzi pokryta patyną, pochodząca z Krety
Zdjęcie mikroskopowe powierzchni miedzi polikrystalicznej (Olympus DSX, powiększenie 69 ×, rozmiar sfotografowanego obszaru 4 × 4 milimetry)

Czysta miedź zawiera 0,01–1,0% zanieczyszczeń[potrzebny przypis], zależnie od rodzaju wytwarzania, przetwarzania i oczyszczania. Za zanieczyszczenia uważa się Bi, Pb, Sb, As, Fe, Ni, Sn, Zn oraz S. Jest dość odporna chemicznie, zalicza się do metali półszlachetnych. Nie ulega działaniu kwasów w warunkach nieutleniających, natomiast w warunkach utleniających roztwarza się bez wydzielania wodoru[9]:

3Cu + 8HNO
3
(rozcieńczony) → 3Cu(NO
3
)
2
+ 2NO↑ + 4H
2
O
Cu + 4HNO
3
(stężony) → Cu(NO
3
)
2
+ 2NO
2
↑ + 2H
2
O

Miedź tworzy dużą różnorodność związków na I i II stopniu utlenienia (według dawnej nomenklatury nazywane odpowiednio miedziawymi lub miedziowymi)[10], znane są też nieliczne związki na stopniu utlenienia III (np. [CuF
6
]3−
)[9][11] i IV (np. [CuF
6
]2−
)[11]. Tworzy też nietrwałe kopleksy z tlenkiem węgla, w których występuje na 0 stopniu utlenienia (np. [Cu(CO)
3
]
)[11]. Nie reaguje z wodą, ale na powietrzu pokrywa się cienką warstwą CuO, w wyniku czego ciemnieje i przybiera barwę określaną jako czerwona[12] lub czerwonobrązowa[13]. W przeciwieństwie do utleniania żelaza w wilgotnym powietrzu, utworzona warstwa tlenkowa zapobiega dalszej korozji. Zielona warstwa patyny (węglan hydroksomiedzi(II)) występuje na starych konstrukcjach miedzianych, jak dachy starych kościołów, czy na Statui Wolności, będącej największym na świecie pomnikiem stworzonym z udziałem techniki repusowania. Siarkowodór i siarczki reagują z miedzią, tworząc na powierzchni siarczki miedzi. Miedź może ulec korozji, jeśli narażona jest na kontakt z powietrzem zawierającym związki siarki[14]. Amoniakalne roztwory zawierające tlen dają rozpuszczalne w wodzie kompleksy miedzi, podobnie jak tlen i kwas solny, tworząc chlorki miedzi i zakwaszony nadtlenek wodoru, tworząc sole miedzi(II). Chlorek miedzi(II) i miedź ulegają komproporcjonowaniu, tworząc chlorek miedzi(I)[15].

Miedź metaliczna w postaci pyłu jest bardzo łatwopalna i szkodliwa dla środowiska[16].

Charakterystyka niektórych związków

Pięciowodny siarczan miedzi(II) CuSO
4
·5H
2
O
(występujący naturalnie jako minerał chalkantyt) ma własności odkażające, a bezwodny jest higroskopijny i niekiedy stosowany jest do osuszania rozpuszczalników. Kompleksy miedzi są trwałe, jednak dość łatwo jest w nich zmieniać stopień utlenienia miedzi i dlatego są one często stosowane jak katalizatory reakcji redoks. Związki miedzi(I) są trudno rozpuszczalne w wodzie, natomiast wodne roztwory soli miedzi(II) z reguły mają barwę niebieską lub niebiesko-zieloną.

Występowanie

Malachit

Występuje w skorupie ziemskiej w ilościach 55 ppm. W naturze występuje w postaci rud oraz w postaci czystej jako minerał – miedź rodzima. Miedź rodzima jest rzadko spotykana. Głównym źródłem tego metalu są minerały oznaczone jako rudne w poniższej tabeli.

Ważniejsze minerały miedzi
Nazwa minerału Wzór chemiczny Minerał rudny
Miedź rodzima Cu Tak
Kowelin CuS Tak
Chalkozyn Cu
2
S
Tak
Chalkopiryt CuFeS
2
Tak
Bornit Cu
5
FeS
4
Tak
Tenoryt CuO Nie
Kupryt Cu
2
O
Nie
Malachit Cu
2
CO
3
(OH)
2
Nie
Azuryt Cu
3
(CO
3
)
2
(OH)
2
Nie
Tennantyt Cu
12
As
4
S
13
Nie
Tetraedryt [Cu,Fe]
12
Sb
4
S
13
Nie
Chalkantyt CuSO
4
·5H
2
O
Nie

Wydobycie, zasoby i konsumpcja miedzi na świecie

Wydobycie miedzi na świecie (2005)
Największa odkrywkowa kopalnia miedzi na świecie – Chuquicamata (Chile, 1984)

Ze względu na duże zapotrzebowanie i stosunkowo małe zasoby naturalne, miedź stanowi materiał strategiczny. Większość miedzi wydobywa się jako siarczek w kopalniach odkrywkowych ze złóż porfiru miedziowego zawierającego do 1% miedzi. W światowym wydobyciu rud miedzi w przeliczeniu na czysty składnik, wynoszącym w 2010 r. łącznie 16,2 mln ton, przodowały: Chile (5,52 mln ton), Peru (1,28 mln ton), Chiny (1,15 mln ton) USA (1,12 mln ton), Australia (900 tys. ton), Indonezja (840 tys. ton), Zambia (770 tys. ton), Rosja (750 tys. ton), Kanada (480 tys. ton), Polska (430 tys. ton) i Kazachstan (400 tys. ton)[17].

Do krajów posiadających największe szacowane zasoby miedzi należą: Chile (150 mln ton), Peru (90 mln ton), Australia (80 mln ton), Meksyk (38 mln ton), Stany Zjednoczone (35 mln ton), Chiny, Indonezja i Rosja (30 mln ton) oraz Polska, której znane zasoby są szacowane na 26 mln ton[17]. Głównym ośrodkiem przemysłu miedziowego w Polsce jest Legnicko-Głogowski Okręg Miedziowy.

Otrzymywanie

Rudy miedzi zawierają nieznaczne ilości miedzi. W celu oddzielenia siarczków miedzi od skały płonnej, stosowana jest flotacja. Otrzymane w ten sposób koncentraty miedzi przerabiane są w piecach hutniczych (np. piec zawiesinowy), a produktem wytopu jest kamień miedziowy. Po procesie konwertorowania odlewane są anody miedziowe, poddawane elektrorafinacji. Produktem huty są katody, które w zależności od przeznaczenia przetapiane są na wlewki różnego kształtu i wielkości.

Recykling

Miedź, tak jak aluminium, jest w 100% poddawana recyklingowi bez straty jakości. W objętości, miedź jest trzecim po żelazie i aluminium najczęściej odzyskiwanym metalem. Szacuje się, że w użyciu jest 80% kiedykolwiek wydobytej miedzi[18]. Recykling w latach 2002–2008 dostarczał około 35% zużywanej miedzi[19]. Ze względu na charakter surowca przewiduje się, że w ciągu następnych lat udział recyklingu w ogólnej produkcji miedzi będzie rósł. Proces odzyskiwania miedzi przebiega w ten sam sposób jak w procesie jej otrzymywania, wymaga jednak mniejszej liczby etapów. Wysokiej czystości złom jest topiony w piecu, a następnie redukowany i wylewany w postaci kęsów i sztabek; niskiej czystości złom jest poddawany elektrorafinacji w kąpieli kwasu siarkowego[20].

Zastosowanie

Dach pokryty miedzią

Miedź obok żelaza odegrała wyjątkową rolę w rozwoju cywilizacji ludzkiej. Pierwiastek ten znany jest od starożytności, od kiedy był podstawowym składnikiem brązów, od których nazwano epokę brązu. Głównym zastosowaniem miedzi jest produkcja przewodów elektrycznych (60%), pokryć dachów i instalacji wodociągowych (20%) oraz maszyn przemysłowych (15%). Miedź używana jest głównie jako czysty metal lub – gdy wymagana jest większa twardość – w postaci stopów z innymi metalami (5% całkowitego zużycia), takich jak brąz czy mosiądz[21]. Mała część miedzi jest używana w produkcji związków będących dodatkami do żywności i fungicydami, stosowanymi w rolnictwie[22][23], a także stosowana jako barwnik szkła czy katalizator.

W roku 2009 ogólnoświatowa konsumpcja miedzi wynosiła około 22,1 mln ton[19]. Źródłami miedzi była miedź wydobywana w kopalniach (w 2009 roku było to ponad 15 mln ton) oraz miedź pozyskiwana z recyklingu, który w 2008 roku dostarczył około 35% ogółu konsumowanej miedzi[19]. Do największych konsumentów miedzi należą (2009): Chiny (7,87 mln ton), Europa Zachodnia (3,13 mln ton), Ameryka Północna (2,47 mln ton), Japonia (1,22 mln ton), Indie (0,92 mln ton) oraz Korea Południowa (0,76 mln ton)[19]. Miedź jest używana w budownictwie (7,26 mln ton, w tym do budowy instalacji elektrycznych i wodociągowych, odpowiednio 5,27 i 1,33 mln ton), infrastrukturze (3,26 mln ton, w tym do budowy infrastruktury elektrycznej i telekomunikacyjnej, odpowiednio 2,54 i 0,72 mln ton) oraz budowie maszyn (11,57 mln ton, w tym maszyny przemysłowe, ogólnie pojętego transportu, chłodzące, urządzenia elektroniczne, odpowiednio 2,74; 2,56; 1,33; 0,77 mln ton)[19].

Urządzenia elektryczne

Właściwości elektryczne miedzi są wykorzystywane w przewodach miedzianych oraz budowanych w oparciu o nie urządzeniach takich jak transformatory, cewki czy elektromagnesy. W układach scalonych i obwodach drukowanych stosuje się ją ze względu na bardzo dobrą przewodność elektryczną. W radiatorach i wymiennikach ciepła korzysta się z niej ze względu na wyższe rozpraszanie ciepła w stosunku do powszechnie używanego aluminium. Miedź jest używana także do budowy lamp elektronowych, monitorów CRT i magnetronów jako falowodów promieniowania mikrofalowego[24].

Stopy

 Osobny artykuł: Stopy miedzi.

Metal jest dodawany do wielu stopów, zarówno do stali, jak i do stopów aluminium. Jest też dodawany do srebra i złota, poprawiając znacznie ich własności mechaniczne. Miedź z cyną, molibdenem i innymi metalami przejściowymi tworzy cały zestaw stopów zwanych ogólnie brązami. W stopach z cynkiem i innymi dodatkami tworzy mosiądze, mające bardzo dobre własności mechaniczne oraz znaczną odporność na korozję i dzięki temu bardzo wszechstronne zastosowania. Stopów tych używa się do wyrobu kosztownej armatury i elementów precyzyjnych urządzeń mechanicznych. W jubilerstwie stosowany jest udający złoto tombak.

Budownictwo i przemysł

 Osobny artykuł: Miedź w architekturze.

Ze względu na odporność metalu na wodę, miedź była używana już od czasów starożytnych jako materiał pokryć dachowych. Zielony kolor starszych budynków pochodzi od zachodzącej przez długi czas reakcji, w której miedź jest utleniana najpierw do tlenku miedzi(II), następnie przechodzi w siarczek miedzi(I) lub (II), by w końcu utworzyć hydroksowęglan miedzi(II), nazywany patyną, która jest wysoko odporna na korozję. Piorunochrony są wyrabiane z miedzi w celu skutecznego uziemiania piorunów. Miedź nadaje się do lutowania i spawania w łuku gazowo-metalowym[25].

Zastosowania biostatyczne

Metaliczna miedź (podobnie jak metaliczne srebro) wykazuje właściwości antybakteryjne[26]. Od dawna jest używana jako biostatyczna powierzchnia pokrycia statków, chroniąca przed skorupiakami i omułkami. Pierwotnie była używana czysta miedź, lecz wyparł ją metal Muntza, będący formą mosiądzu o składzie 60% miedzi i 40% cynku. Podobne zastosowanie miedź znalazła w akwakulturze do konstrukcji sieci i innych elementów narażonych na obrastanie organizmami roślinnymi i zwierzęcymi[27]. Jej biostatyczne właściwości usprawiedliwiają użycie jako materiału do wyrobu klamek do drzwi (ograniczenie ilości przenoszonych bakterii) i rur wodociągowych[28]. Opublikowane w 2011 roku badania potwierdzają, że stosowanie powierzchni pokrywanych miedzią redukuje ilość patogenów znajdujących się na powierzchniach w salach OIOM o 97% (bakterie znajdujące się na salach OIOM są odpowiedzialne za 35–80% infekcji wśród pacjentów)[29].

Znaczenie biologiczne miedzi

Miedź występuje powszechnie w wielu organizmach roślinnych i zwierzęcych. Jako mikroelement jest niezbędna dla życia wielu organizmów, biorąc udział m.in. w fotosyntezie i oddychaniu, jednak niektóre giną już przy bardzo niskich jej stężeniach. Dotyczy to np. skrętnicy, choć inne glony też są stosunkowo wrażliwe na obecność jonów miedziowych w wodzie, przez co sole miedzi mogą być stosowane jako algicydy[30].

Miedź jest mikroelementem występującym w centrach aktywnych wielu enzymów, dzięki łatwości pobierania i oddawania elektronu w czasie zmiany stopnia utlenienia. Potrzebna jest do tworzenia się krwinek czerwonych, wchodzi w skład hemocyjaniny, wpływa pozytywnie na błonę otaczającą komórki nerwowe, bierze udział w przesyłaniu impulsów nerwowych. Wchodzi w skład dysmutazy ponadtlenkowej, enzymu o działaniu przeciwutleniającym, chroniącego błony komórkowe przed wolnymi rodnikami. Ponadto bierze udział w tworzeniu tkanki łącznej (wiązania poprzeczne w cząsteczkach kolagenu i elastyny katalizowane przez oksydazę lizylową) i syntezie prostaglandyn, związków zwanych hormonami miejscowymi, wpływających między innymi na czynność serca i ciśnienie tętnicze krwi. U fotoautotrofów wchodzi w skład plastocyjaniny.

Jej minimalne dzienne spożycie wynosi 0,5 ppm. Genetycznie uwarunkowany defekt metabolizmu miedzi prowadzi do wystąpienia schorzenia zwyrodnienia wątrobowo-soczewkowego – choroby Wilsona. Niedobór miedzi może stać się przyczyną niedokrwistości, ponieważ zbyt mała ilość tego pierwiastka powoduje gorsze wchłanianie żelaza i zmniejszenie liczby czerwonych krwinek.

Wchłanianie miedzi (podobnie jak jonów innych metali) w przewodzie pokarmowym jest blokowane przez białka mleka i jaj oraz warzywa kapustne (kapustowate) i amarylkowate zawierające duże ilości związków siarki (np. kapusta, cebula, por, czosnek, gorczyca). Spożywanie tych produktów łącznie z pokarmem o dużej zawartości miedzi znacząco zmniejsza wchłanianie tego pierwiastka przez organizm. Owoce morza obok miedzi zawierają bardzo dużo cynku, który całkowicie blokuje wchłanianie miedzi.

Spożywanie nadmiaru miedzi prowadzić może do zaburzeń pokarmowych i uszkodzenia wątroby. Może to mieć miejsce w przypadku spożywania wody pitnej o niskiej twardości lub niskim pH dostarczanej miedzianą instalacją wodociągową (woda taka wypłukuje miedź z instalacji)[31]. Szacuje się, że bezpieczne dzienne spożycie miedzi waha się w przedziale 2–3 mg, okazyjnie do 10 mg na dzień (dla dorosłych)[32]. Dawka śmiertelna odpowiada około 30 g siarczanu miedzi. Objawy zatrucia są podobne do zatrucia arszenikiem. W przypadku podejrzenia zatrucia podaje się albuminę w mleku lub białku jaj.

Źródła miedzi w pokarmach

Pokarmy bogate w miedź
  • Wątroba – wątroby zwierzęce zawierają bardzo duże ilości mikroelementów i witamin, wątróbka cielęca zawiera 15 mg na 100 g, zawartość miedzi w wątrobie jest zróżnicowana w zależności od jej pochodzenia (od 25% zalecanego dziennego spożycia (RDA) w drobiowej do około 750% w wątrobie cielęcej)[33];
  • Ostrygi – 1–8 mg miedzi w 100 g ostryg. W zależności od gatunku, miejsca połowu i sposobu hodowli zawierają 37–500% RDA[33];
  • Drożdże piekarskie – około 5 mg na 100 g drożdży (ok. 250% RDA)[32];
  • Ziarna sezamu i tahini – ziarna sezamu zawierają 7,75 mg miedzi na 100 g ziaren (204% RDA). Jedna łyżka tahini dostarcza 0,24 mg miedzi (ok. 12% RDA)[33];
  • Kakao i czekolada – kakao zawiera około 3,8 mg miedzi na 100 g produktu (189% RDA), tym samym zawartość miedzi w czekoladzie zależy od zawartości kakao[33];
  • Kalmary i homary – kalmary dostarczają około 2,1 mg miedzi w 100 g (106% RDA), a homary 1,9 mg (97% RDA)[33];
  • Ziarna słonecznika – ziarna zawierają 1,8 mg miedzi na 100 g ziaren (92% RDA)[33];
  • Suszone pomidory – zawierają 1,4 mg w 100 g produktu (71% RDA)[33];
  • Ziarna dyni – zawierają 1,4 mg w 100 g produktu (71% RDA)[33].

Innymi produktami spożywczymi o dużej zawartości miedzi są (RDA w 100 g produktu): ziarna soi (54% RDA), siemię lniane (61% RDA), grzyby shiitake (45% RDA), otręby pszenne (50% RDA), ziarna arbuza (34% RDA), suszone śliwki (31% RDA) i papryka (30% RDA)[33].

W wodzie z instalacji miedzianych większe ilości miedzi znajdują się w wodzie ciepłej niż w zimnej. Jest to istotne przy przygotowywaniu posiłków dla dzieci, dla których dzienne dawki miedzi są mniejsze niż dla dorosłych[32].

Zobacz też

Uwagi

  1. Duże różnice w składzie izotopowym tego pierwiastka w źródłach naturalnych nie pozwalają na podanie wartości masy atomowej z większą dokładnością. Zob. Prohaska i in. 2021 ↓, s. 584.

Przypisy

  1. a b David R. Lide (red.), CRC Handbook of Chemistry and Physics, wyd. 90, Boca Raton: CRC Press, 2009, s. 4-10, ISBN 978-1-4200-9084-0 (ang.).
  2. Copper (nr 326488) (ang.) – karta charakterystyki produktu Sigma-Aldrich (Merck) na obszar Stanów Zjednoczonych. [dostęp 2011-12-24]. (przeczytaj, jeśli nie wyświetla się prawidłowa wersja karty charakterystyki)
  3. Thomas Prohaska i inni, Standard atomic weights of the elements 2021 (IUPAC Technical Report), „Pure and Applied Chemistry”, 94 (5), 2021, s. 573–600, DOI10.1515/pac-2019-0603 (ang.).
  4. a b Encyclopedia of applied physics. T. 4: Combustion to Diamagnetism. VCH Publishers, 1 listopada 1992, s. 267–272. ISBN 978-3-527-28126-8. (ang.).
  5. a b William F. (William Fortune) Smith, Javad Hashemi: Foundations of materials science and engineerin. Dubuque, IA: McGraw-Hill, 2010. ISBN 0-07-352924-9. (ang.).
  6. CRC Handbook of Chemistry and Physics, David R. Lide (red.), wyd. 85, Boca Raton: CRC Press, 2004, ISBN 978-0-8493-0485-9 (ang.).
  7. Resistance Welding Manual. Wyd. 4th. Resistance Welding Manufacturing Alliance, 2003, s. 18–12. ISBN 0-9624382-0-0. (ang.).
  8. Galvanic Corrosion (ang.).
  9. a b John David Lee, Zwięzła chemia nieorganiczna, wyd. 4, Warszawa: Wydawnictwo Naukowe PWN, 1997, s. 376–382, ISBN 83-01-12352-4.
  10. Egon. Wiberg, Nils. Wiberg, A. F. (Arnold Frederick) Holleman: Inorganic chemistry. San Diego: Academic Press, 2001. ISBN 978-0-12-352651-9. (ang.).
  11. a b c Norman N. Greenwood, Alan Earnshaw, Chemistry of the Elements, wyd. 2, Oxford–Boston: Butterworth-Heinemann, 1997, s. 1179, ISBN 0-7506-3365-4 (ang.).
  12. Adam Bielański: Chemia ogólna i nieorganiczna. Warszawa: PWN, 1981, s. 632. ISBN 83-01-02626-X.
  13. Encyklopedia techniki. Chemia, Władysław Gajewski (red.), Warszawa: Wydawnictwa Naukowo-Techniczne, 1965, OCLC 33835352.
  14. G. Kluger, T. Glauser, R. Seeruthun, S. Perdomo i inni. Adjunctive rufinamide in Lennox-Gastaut syndrome: a long-term, open-label extension study.. „Acta Neurol Scand”. 122 (3), s. 202–208, 2010. DOI: 10.1111/j.1600-0404.2010.01334.x. PMID: 20199521. (ang.). 
  15. Wayne Richardson: Handbook of copper compounds and applications. New York: Marcel Dekker, 1997. ISBN 978-0-585-36449-0. OCLC 47009854. (ang.).
  16. Pył miedzi (nr 266086) w katalogu produktów Sigma-Aldrich (Merck). [dostęp 2011-12-24].
  17. a b Mineral Commodity Summaries – Copper. „U.S. Geological Survey”, styczeń 2011. U.S. Geological Survey. (ang.). 
  18. Copper- Recycling. copperinfo.com. [zarchiwizowane z tego adresu (2012-03-05)]. (ang.)..
  19. a b c d e The World Copper Factbook 2010. „The World Copper Factbook”. International Copper Study Group. (ang.). 
  20. Overview of Recycled Copper (ang.).
  21. Copper. W: John Emsley: Nature’s building blocks: an A-Z guide to the elements. Oxford University Press, 11 sierpnia 2003, s. 121–125. ISBN 978-0-19-850340-8. (ang.).
  22. Copper. American Elements, 2008. [dostęp 2011-06-20]. (ang.).
  23. Nonsystematic (Contact) Fungicides. W: Ullmann’s Agrochemicals. Weinheim: Wiley-VCH, 2007-04-02, s. 623. ISBN 978-3-527-31604-5. (ang.).
  24. SLAC National Accelerator Laboratory: Accelerator: Waveguides (SLAC VVC). [w:] SLAC Virtual Visitor Center [on-line]. [dostęp 2011-05-20]. Cytat: A waveguide is an evacuated rectangular copper pipe. It carries electromagnetic waves from one place to another without significant loss in intensity (ang.).
  25. J. R. (Joseph R.) Davis: Copper and copper alloy. Materials Park, OH: ASM International, 2001. ISBN 0-87170-726-8. (ang.).
  26. Hiroshi Kawakami, Kazuki Yoshida, Yuya Nishida, Yasushi Kikuchi, Yoshihiro Sato. Antibacterial properties of metallic elements for alloying evaluated with application of JIS Z 2801:2000. „ISIJ International”. 48 (9), s. 1299–1304, 2008. (ang.). 
  27. Corrosion Behaviour of Copper Alloys used in Marine Aquaculture (ang.).
  28. A. Biurrun, L. Caballero, C. Pelaz, E. León i inni. Treatment of a Legionella pneumophila-colonized water distribution system using copper-silver ionization and continuous chlorination.. „Infect Control Hosp Epidemiol”. 20 (6), s. 426–428, Jun 1999. DOI: 10.1086/501645. PMID: 10395146. 
  29. ScienceDaily: Copper Reduces Infection Risk by More Than 40 Per Cent, Experts Say. 2011-07-01. [dostęp 2011-07-02]. (ang.).
  30. Stefan Gumiński: Fizjologia glonów i sinic. Wrocław: Wydawnictwo Uniwersytetu Wrocławskiego, 1990. ISBN 83-229-0372-3.
  31. Stenhammar L. Diarrhoea following contamination of drinking water with copper. „Eur J Med Res”. 6 (4), s. 217–218, 1999. PMID: 10383874. 
  32. a b c Foodfacts – Copper (ang.).
  33. a b c d e f g h i Top 10 Foods Highest in Copper (ang.).

Read other articles:

Isabel dari AsturiasPermaisuri Portugal dan AlgarvePeriode30 September 1497 – 23 Agustus 1498Informasi pribadiKelahiran2 Oktober 1470Dueñas, PalenciaKematian23 Agustus 1498 (usia 27)Zaragoza, SpanyolPemakamanBiara Santa Isabel, Toledo, SpanyolWangsaTrastámaraAyahFerrando II d'AragónIbuIsabel dari KastilaPasanganAfonso dari PortugalManuel I dari PortugalAnakMiguel, Pangeran Portugal dan AsturiasAgamaGereja Katolik Roma Isabella, Putri Asturias (2 Oktober 1470 – 23 Agustus 1498) merupaka...

 

Organisasi Kerja Sama Islamمنظمة التعاون الاسلاميOrganization of Islamic CooperationOrganisation de la coopération islamique BenderaSemboyan: Untuk menjaga kepentingan dan menjamin kemajuan dan kesejahteraan umat Islam  Negara anggota  Negara pengamat   Negara yang dihalangi keanggotaannyaPusat administrasi Jeddah, Arab SaudiBahasa resmiArabInggrisPrancisTipeOrganisasi antarpemerintahKeanggotaan57 negara anggotaPemimpin• Sekretari...

 

City in Washington, United States Not to be confused with Port of Los Angeles. City in Washington, United StatesPort AngelesCityAerial view of downtown Port Angeles, looking towards the Olympic MountainsMotto: Where the mountains meet the sea.Location of Port Angeles in Clallam County and the state of WashingtonPort AngelesLocation of Port AngelesShow map of Washington (state)Port AngelesPort Angeles (the United States)Show map of the United StatesCoordinates: 48°06′47″N 123°26′2...

جزء من سلسلة مقالات حولالحرية مفاهيم حرية حرية سلبية حرية إيجابية حقوق حرية الإرادة حسب المجال مدنية اقتصادية فكرية سياسية حسب الحق التجمع التنظيم الحركة الصحافة الاعتقاد التعبير المعلومات الفكر  بوابة حقوق الإنسانعنت جزء من سلسلة مقالاتأنظمة اقتصادية إيديولوجيات ...

 

BaoPoster filmSutradaraDomee ShiProduserBecky Neiman-CobbDitulis olehDomee ShiPenata musikToby ChuSinematograferPatrick LinIan MegibbenPenyuntingKatherine RinggoldPerusahaanproduksi Walt Disney Pictures Pixar Animation Studios DistributorWalt Disney StudiosMotion PicturesTanggal rilis 21 April 2018 (2018-04-21) (Tribeca Film Festival) 15 Juni 2018 (2018-06-15) (bersama Incredibles 2) Durasi8 menitNegaraKanadaAmerika Serikat Bao adalah film pendek animasi komputer tahun...

 

Megathrust earthquake in the Aleutian Islands 1965 Rat Islands earthquakeUTC time1965-02-04 05:01:22ISC event859206USGS-ANSSComCatLocal dateFebruary 3, 1965 (1965-02-03)Local time19:01:22Magnitude8.7 MwDepth30.3 km (19 mi)Epicenter51°17′N 178°33′E / 51.29°N 178.55°E / 51.29; 178.55Areas affectedUnited States (Alaska)Total damage10,000$Max. intensityVI (Strong)[1]Tsunami10.7 m (35 ft) The 1965 Rat Is...

Bishop of Caithness Saint Gilbert of DornochStained glass of St Gilbert from Dornoch Cathedral, Scotland.BishopBornunknownMorayDied1245Feast1 AprilPatronageDiocese of Dornoch Gilbert de Moravia (died 1245), later known as Saint Gilbert of Dornoch, or Gilbert of Caithness, was the most famous Bishop of Caithness and founder of Dornoch Cathedral. His name may suggest that he came from the semi-Gaelicized family of Flemish origin who were Lords of Duffus, and who during Gilbert's episcopate woul...

 

Air University PressParent companyAir UniversityFounded1953; 71 years ago (1953)[1]Country of originUnited StatesHeadquarters locationMaxwell Air Force Base, AlabamaPublication typesAcademic journals, booksOfficial websitewww.airuniversity.af.edu/AUPress/ Air University Press is a division of the Academic Services Directorate and housed under the Muir S. Fairchild Research Information Center of Air University, Maxwell AFB, Alabama.[2] It publishes faculty an...

 

Ini adalah nama Tionghoa; marganya adalah Yu. Yu WenxiaLahir6 Agustus 1989 (umur 34)Shangzhi, Heilongjiang, TiongkokPekerjaanModel, aktrisTinggi1,77 m (5 ft 10 in)GelarMiss China World 2012Miss World 2012[1]Pemenang kontes kecantikanWarna rambutHitamWarna mataCokelatKompetisiutamaMiss China World 2012(Pemenang)Miss World 2012(Pemenang)(Miss World Asia & Oceania)(Miss World Talent) Yu Wenxia (Hanzi: 于文霞; Pinyin: Yú Wénxiá; lahir 6 Agustus 1989) ...

Austronesian language spoken in Vanuatu East AmbaeNative toVanuatuRegionAmbaeNative speakers5,000 (2001)[1]Language familyAustronesian Malayo-PolynesianOceanicSouthern OceanicNorth-Central VanuatuNorth VanuatuEast AmbaeLanguage codesISO 639-3ombGlottologeast2443East Ambae is not endangered according to the classification system of the UNESCO Atlas of the World's Languages in Danger Daisy speaking East Ambae. East Ambae (also known as Omba, Oba, Aoba, Walurigi, Lolovoli, Nort...

 

Android smartphone Not to be confused with Samsung Galaxy Tab S8. Samsung Galaxy S8Samsung Galaxy S8+Samsung Galaxy S8 ActiveSamsung Galaxy S8 (left) and the S8+ (right)CodenameProject DreamCruiser (Galaxy S8 Active)BrandSamsungManufacturerSamsung ElectronicsSloganUnbox Your PhoneSeriesGalaxy SModel SM-G950x (S8) SM-G955x (S8+) SM-G892A (S8 Active AT&T) (last letter varies by carrier and international models) Compatible networks2G, 3G, 4G, LTEFirst releasedApril 21, 2017; 7 y...

 

Ираклеониты — ученики гностика Ираклеона (II век). Упоминаются как особая секта Епифанием и Августином; при крещении и миропомазании они соблюдали обряд помазания елеем и при этом произносили воззвания на арамейском языке, которые должны были освободить душу от власт�...

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: コルク – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年4月) コルクを打ち抜いて作った瓶の栓 コルク(木栓、�...

 

Classic rock radio station in New York City This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: WAXQ – news · newspapers · books · scholar · JSTOR (August 2021...

 

AkuntansiKonsep dasarAkuntan · Pembukuan · Neraca percobaan · Buku besar · Debit dan kredit · Harga pokok · Pembukuan berpasangan · Standar praktik · Basis kas dan akrual · PABU / IFRSBidang akuntansiBiaya · Dana · Forensik · Keuangan · Manajemen · PajakLaporan keuanganNeraca · Laba rugi · Perubahan ekuitas · ...

1989 play by Alan Ayckbourn The Revengers' Comedies1991 West End production posterWritten byAlan AyckbournCharactersHenry BellKaren KnightlyImogen Staxton-BillingDate premiered13 June 1989Place premieredStephen Joseph Theatre, Scarborough, North YorkshireOriginal languageEnglishGenreBlack comedyOfficial siteAyckbourn chronology Mr A's Amazing Maze Plays(1988) Invisible Friends(1989) The Revengers' Comedies is a play by Alan Ayckbourn. Its title references that of The Revenger's Tragedy. The p...

 

Iraqi Assyrian militia Dwekh Nawshaܕܒ݂ܝܚ ܢܦ̮ܫܐDwekh Nawsha emblemLeadersEmanuel Khoshaba Youkhana[1]Dates of operation2014 – 2018AllegianceAssyrian Patriotic PartyMotivesRegional defenceArmed resistanceActive regionsNineveh Plains, Northern IraqSize250 light infantry[2]AlliesIraqi Armed ForcesPeshmergaNineveh Plain Protection UnitsNineveh Plain ForcesQaraqosh Protection CommitteeOpponentsISILBattles and warsBattle of Mosul (2016–17) The Dwekh Nawsha (Syriac...

 

Diocesan bishop in the Church of England Bishop of Bath and WellsBishopricanglican Arms of the Bishop of Bath and Wells: Azure, a saltire per saltire quarterly quartered or and argent[1]Incumbent:Michael BeasleyLocationEcclesiastical provinceCanterburyResidenceBishop's Palace, WellsInformationFirst holderAthelmEstablished909DioceseBath and WellsCathedralWells CathedralWebsitewww.bathandwells.org.uk The Bishop of Bath and Wells heads the Church of England Diocese of Bath and Wells in t...

Questa voce o sezione sugli argomenti stadi di calcio e Lussemburgo non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Questa voce sugli argomenti stadi di calcio e architetture del Lussemburgo è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Questa voce sull'argomento sport in Lussemburgo è solo un abbozzo. Con...

 

Public university in Leicester, England De Montfort redirects here. For other uses, see Montfort (disambiguation). De Montfort University LeicesterCoat of ArmsFormer namesLeicester School of Art Leicester Colleges of Art and Technology Leicester PolytechnicMottoLatin: Excellentia et studiumMotto in EnglishExcellence and ZealTypePublicEstablished1870; 154 years ago (1870) 1992 – university statusEndowment£2.56 million (2022)[1]Budget£234.6 million (2021–22)...