Από τότε που το πετρέλαιο έγινε η πλέον «στρατηγική» πρώτη ύλη του πλανήτη μας, το αιθένιο έγινε επίσης η «κεντρική» οργανική πρόδρομη ένωση, αφού χρησιμοποιείται ευρύτατα από τη χημική βιομηχανία, αποτελώντας την κυριότερη βάση από την οποία παράγονται πλήθος πρωτογενών ή και δευτερογενών προϊόντων, όπως το πολυαιθυλένιο, το οξιράνιο, το στυρόλιο ή και άλλες α-ολεφίνες. Η ετήσια παγκόσμια παραγωγή του, που ήταν πάνω από 109 εκατομμύρια τόννοι το 2006, ξεπέρασε τελικά κάθε άλλη βιομηχανικά παραγώμενη οργανική ένωση[3][4].
Το 2016, παρά την οικονομική κρίση που προηγήθηκε, η παγκόσμια παραγωγή του ξεπέρασε τους 150 εκατομμύρια τόννους. Μεγάλο μέρος της παραγωγής του κατευθύνεται προς την παραγωγή πολυαιθυλενίου, που με τη σειρά του αποτελεί ένα ευρύτατα χρησιμοποιοποιούμενο είδος πλαστικού, που περιέχει αλυσίδες αιθενίου διαφόρων μηκών. Η παραγωγή αυτή εκλύεει αέρια του θερμοκηπίου, που συμπεριλαμβάνουν μεθάνιο ως παραπροϊόν της παραγωγής αιθενίου και διοξείδιο του άνθρακα, από την παραγωγή ενέργειας που απαιτείται για την παραγωγή κάθε επιμέρους συστατικό που χρησιμοποιείται για τη διεργασία παραγωγής.
Το αιθένιο είναι, επίσης, μια σημαντική φυσική φυτικήορμόνη, που χρησιμοποιείται με φυσικό τρόπο από τα φυτά και με τεχνητό τρόπο στην αγροτική παραγωγή για να δώσει την εντολή για την ωρίμανση των φρούτων[5].
Ονοματολογία
Η ονομασία «αιθένιο» προέρχεται από την ονοματολογία κατά IUPAC. Συγκεκριμένα, το πρόθεμα «αιθ-» δηλώνει την παρουσία δύο (2) ατόμων άνθρακα ανά μόριο της ένωσης, το ενδιάμεσο «-εν-» δείχνει την παρουσία ενός (1) διπλού δεσμού μεταξύ ατόμων άνθρακα στο μόριο και η κατάληξη «-ιο» φανερώνει ότι δεν περιέχει χαρακτηριστικές ομάδες με χαρακτηριστικές καταλήξεις, δηλαδή ότι είναι ένας υδρογονάνθρακας, αφού η ονομασία δεν αναφέρει χαρακτηριστικές ομάδες ούτε ως προθέματα.
Ιστορία
Στην αρχαία Αίγυπτο χρησιμοποιούσαν (μάλλον ασυνείδητα) αιθένιο, για την πρόωρη ωρίμανση μούρων και σύκων: Χάρασσαν μερικά άγουρα μούρα, τα οποία έτσι παρήγαγαν αιθένιο, για να επιταχύνουν την επούλωση των τραυμάτων τους, αλλά έτσι παράλληλα επιτάχυναν και την ωρίμανση των υπόλοιπων άγουρων φρούτων[6].
Πολλοί γεωλόγοι και μελετητές πιστεύουν ότι στο διάσημο Αρχαίο Ελληνικό Μαντείο των Δελφών, η Πυθία έμπαινε σε έκσταση αναπνέοντας αιθένιο που έβγαινε από σχισμές του εδάφους[7].
Η πρώτη αναφορά στο αιθένιο χρονολογείται στο 1669, όταν ο Γερμανόςαλχημιστής Γιόχαν Γιόαχιμ Μπέχερ ανέφερε στο έργο του Actorum laboratorii Chymici Monacensis, seu Physicae subterraneae, ότι παρατήρησε έκλυση ενός αερίου όταν θέρμαινε αιθανόλη με θειικό οξύ[8][9][10][11].
Ο Τζόσεφ Πρίστλεϋ (Joseph Priestley) επίσης ανέφερε το ίδιο αέριο στο έργο του Experiments and observations, που είναι σχετικό με διάφορους κλάδους της φυσικής φιλοσοφίας, μαζί με μια συνέχεια παρατηρήσεων για τον ατμοσφαιρικό αέρα, το 1779, όπου ανέφερε ότι ο Ζαν Ίνγκενχαουσζ (Jan Ingenhousz) είδε το αιθένιο να συνθέτεται με τον ίδιο τρόπο (δηλαδή από αιθανόλη και θειικό οξύ) από το Mr. Enée στο Άμστερνταμ, το 1777, και ότι ακολούθως το σύνθεσε και ο ίδιος ο Ζαν Ίνγκενχαουσζ[12].
Το 1795, τέσσερεις (4)Ολλανδοί χημικοί, οι Γιόχαν Ρούντολφ Ντεϊμάν (Johan Rudolph Deiman), Αντριέν Πατς βαν Τρούστβικ (Adrien Pats van Troostwyck), Ανθονί Λαουβάρενμπουργκ (Anthoni Lauwerenburgh) και Νίκολας Μποντ (Nicolas Bondt) ανακάλυψαν τη χημική ιδιότητα του αιθενίου να σχηματίζει 1,2-διχλωραιθάνιο[13], που στις συνηθισμένες συνθήκες είναι ελαιώδες υγρό, όταν αντιδρά με (στοιχειακό) χλώριο. Εξαιτίας αυτής της ιδιότητάς του, οι χημικοί αυτοί ονόμασαν το αιθένιο με την ονομασία στα γαλλικάFrench gaz oléfiant, που μεταφράζεται στα ελληνικά ως «ελαιογόνο αέριο»[14][15]. Η ονομασία αυτή αποδώθηκε στα αγγλικά ως olefiant gas, και επικράτησε για κάποιο χρονικό διάσημα[14]. Η ονομασία αυτή οδήγησε στο σχηματισμό του όρου «ολεφίνες», και που μεγάλο μέρος της βιβλιογραφίας ταυτίζει με τα αλκένια, αλλά αφού το σχετικό τεστ αξιοποιεί τον αποχρωματισμό (στοιχειακού) βρωμίου[16], είναι προφανές ότι επεκτείνεται στο ευρύτερο σύνολο των χημικών ενώσεων που έχουν αυτήν την ιδιότητα.
Εν τω μεταξύ, το 1807, ο Τζον Ντάλτον (John Dalton) επιχείρησε να προσδιορίσει τη μοριακή δομή του αιθενίου. Κατά το δεύτερο ήμισυ του 19ου αιώνα επιτεύχθηκε η συνθετική παραγωγή φυτικών οξέων, όπως του ηλεκτρικού οξέος, από αιθένιο. Ακόμη, κατά την ίδια περίπου χρονική περίοδο έγινε συνήθεια η χρησιμοποίηση της ελληνικής προέλευσης κατάληξης «-ένη», που σημαίνει «θυγατέρα», ακριβώς με την έννοια της δήλωσης ότι μια ένωση είναι «θυγατρική», δηλαδή παράγωγη μιας άλλης. Θεωρήθηκε, έτσι, ότι το αιθένιο (C2H4) προέρχεται από τη ρίζα αιθύλιο (C2H5), οπότε το αιθένιο ονομάστηκε «αιθυλένιο», τουλάχιστον από το 1852.
Το 1979 η ονοματολογία κατά IUPAC έκανε μια εξαίρεση, επιτρέποντας τη μη συστηματική ονομασία «αιθυλένιο»[17], αλλά αυτή η απόφαση αναιρέθηκε το 1993[18], και από τότε ισχύει επίσημα η συστηματική ονομασία «αιθένιο».
Δομή
Αυτός ο υδρογονάνθρακας έχει μόριο που αποτελείται από τέσσερα (4)άτομαυδρογόνου ενωμένα με ένα ζεύγος ατόμων άνθρακα που συνδέονται μεταξύ τους με ένα διπλό δεσμό. Όλα αυτά τα έξι (6) συνολικά άτομα είναι ομοεπίπεδα. Η γωνία είναι 117,4°, δηλαδή πολύ κοντά στις 120° που προβλέπονται για τον sp² υβριδισμό των ατόμων άνθρακα, που συνδέονται με διπλό δεσμό. Η περιστροφή του δεσμού C=C απαιτεί (σχετικά) υψηλή ποσότητα ενέργειας, γιατί απαιτεί την (προσωρινή) διάσπαση του π-δεσμού.
Ο π-δεσμός στο μόριο του αιθενίου είναι υπεύθυνος για τη χρήσιμη δραστικότητά του. Η περιοχή του διπλού δεσμού χαρακτηρίζεται από (σχετικά) υψηλή ηλεκτρονιακή πυκνότητα, που επομένως είναι ευάλωτη σε επιδράσεις ηλεκτρονιόφιλων. Πολλές αντιδράσεις του αιθενίου καταλύνται από διάφορα μέταλλα μετάπτωσης, που σχηματίζουν προσωρινά σύμπλοκα με τα π και π* τροχιακά του αιθενίου.
Αφού είναι μια σχετικά απλή ένωση, το αιθένιο είναι επίσης φασματοσκοπικά σχετικά απλό. Το φάσμα του ορατού - υπεριώδους του χρησιμοποιείται ακόμη ως μια δοκιμή για τις θεωρητικές μεθόδους[19].
Η παγκόσμια παραγωγή αιθενίου ήταν 107 εκατομμύρια τόννοι το 2005[3] και 109 εκατομμύρια τόννοι το 2006[21]. Μέχρι το 2010 το αιθένιο παράγονταν από τουλάχιστον 117 εταιρίες σε 55 χώρες[22]. Για να φθάσει την ακόμη μεγαλύτερη ζήτηση, υπάρχει απότομη αύξηση στην κατασκευή νέων εγκαταστάσεων παραγωγής σε παγκόσμιο επίπεδο, ιδιαίτερα στις χώρες του Περσικού Κόλπου και στην Κίνα[22].
Το αιθένιο παράγεται γενικά από την πετροχημική βιομηχανία με πυρόλυση από ατμό[28]. Σύμφωνα με τη διεργασία αυτή (ατμός και) αέριοι (προερχόμενοι από το φυσικό αέριο και τα υγραέρια) και ελαφριοί υγροί υδρογονάνθρακες (προερχόμενοι από το πετρέλαιο, συνήθως μέχρι και με επτά (7) άτομα άνθρακα) θερμαίνονται στους 750–950 °C, οπότε αρχίζουν να διασπούνται τυχαία σε διάφορες ελεύθερες ρίζες που, ως εξαιρετικά δραστικές, εμπλέκονται σε πολυάριθμες αντιδράσεις που (διακόπτονται) με ακαριαία ψύξη. Αυτή η διεργασία (σπότομης θέρμανσης-ψύξης) διασπά τους μεγαλύτερης μοριακής μάζας υδρογονάνθρακες σε μικρότερου μοριακού βάρους, σε ένα μίγμα που περιλαμβάνει τόσο αλκάνια, όσο και ακόρεστους υδρογονάνθρακες. Το αιθένιο διαχωρίζεται απ' αυτό το μίγμα με συνεχόμενη συμπίεση και απόσταξη. Με παρόμοιες διεργαίες τα διυλιστήρια πυρολύουν τους υψηλής μοριακής μάζας υδρογονάνθρακες σε μεσαίας και μικρής μοριακής μάζας, πάνω από ζεολίτες καταλύτες. Τα βαρύτερα κλάσματα, όπως η νάφθα και τα ορυκτέλαια χρειάζονται τουλάχιστον δύο ψυκτικούς πύργους σε συνδυασμό με καμίνους πυρόλυσης για να ανακυκλώνουν την παραγόμενη βενζίνη και το νερό. Όταν πυρολύεται ένα μίγμα από αιθάνιο και προπάνιο, μόνο ένας ψυκτικός πύργος νερού απαιτείται[29].
Οι περιοχές μιας μονάδας παραγωγής αιθενίου είναι οι ακόλουθες:
Κάμινος πυρόλυσης με ατμό.
Πρωτεύον και δευτερεύον εναλλάκτης θερμότητας με ψυκτικό πύργο.
Σύστημα διάλυσης με ατμό και ανακύκλωσης μεταξύ του καμίνου και των ψυκτικών πύργων.
Πρωτεύον συμπιεστής των παραγώμενων αερίων τριών (3) σταδίων.
Κρυογενική μεταχείρηση: Διαχωρίζει το αέριο μίγμα που απέμεινε σε δύο (2) πύργους:
C1 διαχωριστής: Απομακρύνει το υδρογόνο με ψύξη στους −162 °C. Η συγκεκριμένη θερμοκρασία επιλέχθηκε για να κατακρατείται το μεθάνιο υγρό, γεγονός κρίσιμο για την οικονομική βιοσιμότητα της βιομηχανικής μονάδας. Μπορεί να χρησιμοποιηθεί ως παραπροϊόν, να οδηγηθεί πίσω στην υπομονάδα #1 ή να οδηγηθεί για οξειδωτικό ζευγάρωμα (βλέπετε αντίδραση ενότητας §2.1.3)
C2 διαχωριστής: Το αέριο μίγμα που οδηγείται σ' αυτόν αποτελείται από όλα τα C2 αέρια (δηλαδή αιθάνιο, αιθένιο και αιθίνιο που παρήχθηκαν από την πυρόλυση. Χρειάζεται προσοχή το γεγονός ότι το αιθίνιο που περιέχει είναι εκρηκτικό σε πιέσεις πάνω από 200 kPa).[31] Αν η μερική πίεση του αιθινίου αναμένεται να υπερβεί αυτές της τιμές, τότε ρεύμα των αερίων C2 υφίσταται μερική καταλυτική υδρογόνωση (με χρήση του υδρογόνου που παίρνεται παραπάνω), οπότε μέρος του αιθινίου μετατρέπεται σε αιθένιο (βλέπετε την αντίδραση στην ενότητα 2.2.3). Μετά το αέριο μίγμα οδηγείται σε διαχωριστή C2, από την οροφή του οποίου συλλέγεται το αιθένιο και από το μέσο του το αιθάνιο που οδηγείται πίσω στην υπομονάδα #1 (αν είναι ανεπιθύμητο).
C3 διαχωριστής: Το κατώτερο αέριο στρώμα του διαχωριστή C2 οδηγείται στο διαχωριστή C3, από τον οποίο αποσπούνται τα αέρια C3, αυτά δηλαδή με τρία (3) άτομα άνθρακα, δηλαδή οι ενώσεις προπάνιο, προπένιο, προπίνιο, προπαδιένιο και κυκλοπροπάνιο. Από τα διαχωριζόμενα αυτά αέρια συνήθως κρατιέται το προπένιο ως χρήσιμο παραπροϊόν, ενώ τα υπόλοιπα (ιδίως το προπάνιο) επιστρέφουν (αν δεν κρατηθούν κι αυτά) στην υπομονάδα #1.
C4 διαχωριστής: Με όμοια διαδικασία διαχωρίζονται τα αέρια C4, δηλαδή αυτά με τέσσερα (4) άτομα άνθρακα, από τα τελευταία, C5, δηλαδή με πέντε (5) άτομα άνθρακα, ή και βαρύτερα που απομένουν. Και πάλι όσα θεωρούνται χρήσιμα κρατιούνται και τα υπόλοιπα επιστρέφουν στην υπομονάδα #1[29].
Επειδή η παραγωγή αιθενίου είναι συνολικά εξώθερμη, συνήθως φροντίζεται ώστε να δεσμεύεται η παραγόμενη θερμότητα ώστε να χρησιμοποιηθεί για την παραγωγή υψηλής πίεσης ατμού, που χρησιμοποιείται με τη σειρά του για να οδηγηθεί στις τουρμπίνες και να συμπιέσει το πυρολυώμενο μίγμα. Μέρος από το παραγώμενο προπένιο ή και το αιθένιο μπορεί να χρησιμοποιηθεί ως ψυκτικό αέριο στους ψυκτικούς πύργους. Μια τέτοια μονάδα όσο λειτουργεί δεν χρειάζεται να εισάγει εξωτερικά ατμό στο σύστημα. Ακόμη, μια τυπική τέτοια παγκόσμιου επιπέδου παραγωγής μονάδα με παραγωγή περίπου 3 εκατομμύρια τόννους αιθενίου το χρόνο απαιτεί ένα συμπιεστή πυρολυόμενων αερίων ισχύος 34 MW, ένα συμπιεστή προπενίου ισχύος 22 MW και ένα συμπιεστή αιθενίου ισχύος 11 MW.
Εργαστηριακές μέθοδοι
Με αφυδάτωση αιθανόλης
Με ενδομοριακή αφυδάτωσηαιθανόλης παράγεται αιθένιο. Η αντίδραση ευνοείται σε σχετικά υψηλές θερμοκρασίες, >150 °C. Σε χαμηλότερες ευνοείται η διαμοριακή αφυδάτωση που δίνει διαιθυλαιθέρα, ενώ χωρίς καθόλου θέρμανση παράγεται ο όξινος θειικός αιθυλεστέρας (CH3CH2OSO3H), που αποτελεί την ενδιάμεση ένωση για τις αφυδατώσεις.[32]:
Πριν την καθιέρωση του πετρελαίου ως βασικής στρατηγικής πρώτης ύλης χρησιμοποιήθηκε και για βιομηχανική παραγωγή αιθενίου.
Το αιθένιοεξυπηρετεί ως ορμόνη στα φυτά[74]. Δρα σε επίπεδο ιχνών σε όλη τη ζωή των φυτών σηματοδοτώντας την απόρριψη των φύλλων (των φυλλοβόλων), την άνθηση των ανθών και την ωρίμανση των καρπών. Σε εμπορικούς θαλάμους ωρίμανσης καρπών χρησιμοποιείται επίσης αιθένιο, προερχόμενο από καταλυτικήαφυδάτωσηαιθανόλης, για την τεχνητή τους ωρίμανση. Τυπικά χρησιμοποιείται ένα επίπεδο συγκέντρωσης του αερίου 500 - 2.000 ppm, για 24 - 48 ώρες. Πρέπει να λαμβάνεται μέριμνα για τον έλεγχο της συγκέντρωσης του διοξειδίου του άνθρακα, που παράγεται κατά την ωρίμανση, αφού στη (σχετικά) υψηλή θερμοκρασία ωρίμανσης (20 °C) παρατηρήθηκαν επίπεδα CO2 ως και 10% σε 24 ώρες[75].
Ιστορία της έρευνας του αιθενίου στη Βιολογία των Φυτών
Το αιθένιο είχε βρει πρακτική χρήση από τους αρχαίους Αιγυπτίους, που χάραζαν τα σύκα για να επιταχύνουν την ωρίμανσή τους (το τραύμα προκαλούσε ως ορμονική απάντηση τη σύνθεση αιθενίου για να σηματοδοτήσει την ανάπλαση των κατεστραμμένων, από το τραύμα, ιστών). Οι αρχαίοι Κινέζοι έκαιγαν θυμίαμα (οπότε παρήγαγαν και αιθένιο, ως προϊόν ατελούς καύσης) σε κλειστούς θαλάμους για να επιτύχουν την ωρίμανση των αχλαδιών. Το 1864 ανακαλύφθηκε ότι το αέριο που διέφευγε από τους φανοστάτες (που έκαιγαν φωταέριο, που περιείχε αιθένιο) οδηγούσε σε
σε νανισμού της ανάπτυξης, συστροφή και ανώμαλη πάχυνση των βλαστών των γύρω φυτών[74] . Το 1901 ένας Ρώσος επιστήμονας που ονομάζονταν Ντιμίτρυ Μελτζούμποβ έδειξε ότι το ενεργό συστατικό για το φαινόμενο αυτό είναι το αιθένιο[76]. Ακόμη ο Doubt ανακάλυψε ότι το αιθένιο σηματοδοτούσε την απόρριψη των φύλλων, το 1917[77]. Το 1934 ο Gane ανέφερε ότι τα φυτά συνθέτουν αιθένιο[78]. Το 1935 ο Crocker πρότεινε ότι το αιθένιο είναι μια φυτική ορμόνη, υπεύθυνη για την ωρίμανση των καρπών, αλλά και τη γήρανση των φυτικών ιστών.[79].
Βιοσύνθεση αιθενίου στα φυτά
.
Το αιθένιο παράγεται ουσιαστικά από όλα τα μέρη των ανώτερων φυτών, περιλαμβάνοντας τα φύλλα, τους βλαστούς, τις ρίζες, τα άνθη, τους κονδύλους και τους σπόρους.
«Η παραγωγή του αιθενίου κανονίζεται από μια ποικιλία αναπτυξιακών και περιβαντολλογικών παραγόντων. Κατά τη διάρκεια της ζωής του φυτού, η παραγωγή αιθενίου σηματοδοτεί συγκεκριμένα στάδια της ανάπτυξής τους, όπως η βλάστηση και η ωρίμανη των καρπών, η απόρριψη των φύλλων και ο μαρασμός των ανθών. Η παραγωγή του αιθενίου μπορεί να προκληθεί ακόμη από μια ποικιλία εξωτερικών παρεμβάσεων όπως ο μηχανικός τραυματισμός, το περιβαντολλογικό στρες και η επίδραση διαφόρων χημικών ουσιών που περιλαμβάνουν τις αυξίνες και άλλους κανονιστές».[80]
Η βιοσύνθεση του αιθενίου αρχίζει από τη μετατροπή της μεθειονίνης (ενός αμινοξέος) σε S-αδενοσυλμεθειονίνη (που συμβολίζεται συντομογραφικά SAM, S-Adenosyl Methionine, ή Adomet, Adenosyl methionine) με το ένζυμοαδενοσυλομεθειονινοτρανσφεράση. Έπειτα, η SAM μετατρέπεται σε 1-αμινοκυκλοπροπυλομεθανικό οξύ (ACC, από το 1-Amino-1CarboxylCyclopropane, δηλαδή 1-αμινο-1-καρβοξυκυκλοπροπάνιο, μια εναλλακτική ονομασία) με το ένζυμο 1-αμινοκυκλοπροπυλοκαρβοξυσυνθετάση (ACS, AC(C) Synthetase). Η δράση του συγκεκριμένου ενζύμου καθορίζει το ρυθμό παραγωγής του αιθενίου και γι' αυτό ο έλεγχος αυτής της δράσης είναι το κομβικό σημείο της βιοσύνθεσης του αιθενίου. Το τελευταίο στάδιο απαιτεί την παρουσία οξυγόνου και περιλαμβάνει τη δράση του ενζύμου αμινοκυκλοπροπυλοκαρβοξυοξειδάση (ACO AC(C) Oxidase), γνωστού και ως «ένζυμο σχηματισμού αιθενίου» (EFE, Ethylene Forming Enzyme). Η βιοσύνθεση του αιθενίου επιρεάζεται από την ύπαρξη ενδογενούς ή εξωγενούς αιθενίου. Η ACS αυξάνεται από υψηλά επίπεδα αυξινών, ιδιαίτερα ινδολαιθανικού οξέος (IAA, Indole Acetic Acid) και κυτοκινίνες. Η ACS παρεμποδίζεται από το αμπσκισικο οξύ.
Πώς αντιλαμβάνονται την ύπαρξη του αιθενίου τα φυτά
Το αιθένιο μπορεί να γίνει να αντιληπτό από διαμεμβρανικέςπρωτεΐνες διμερών συμπλόκων. Η γονιδιακή κωδικοποίηση ενός υποδοχέα αιθενίου μπορεί να είναι κλειστό στο Arabidopsis thaliana και μετά στη ντοματιά. Οι υποδοχείς αιθενίου κωδικοποιούνται από πολλαπλά γονίδια στο Arabidopsis και σε γονιδιώματα ντοματιάς. Η γονιδιακή οικογένεια περιλαμβάνει πέντε (5) υποδοχείς στο Arabidopsis και τουλάχιστον έξι (6) στην ντοματιά, τα περισσότερα από τα οποία αποδείχθηκε ότι δεσμεύουν (μόρια) αιθενίου. Η αλληλουχία DNA για τους υποδοχείς αιθενίου έχουν επίσης ταυτοποιηθεί σε πολλά άλλα είδη φυτών και μια πρωτεΐνη που δεσμεύει αιθένιο έχει ταυτοποιηθεί σε κυανοβακτήρια[74].
Περιβαντολογικοί και βιολογικοί σηματοδότες (της βιοσύνθεσης) αιθενίου (από τα φυτά)
Περιβαντολλογικοί (και άλλοι εξωτερικοί) παράγοντες μπορούν να προκαλέσουν τη βιοσύνθεση αιθενίου ως φυτικής ορμόνης. Πλημμύρα, ξηρασία, παγετός, τραυματισμός και επίθεση παθογόνων μπορούν να επηρεάσουν τη βιοσύνθεση αιθενίου στα φυτά. Σε περίπτωση πλημμύρας (π.χ.), η ρίζα (του φυτού) υποφέρει από έλλειψη οξυγόνου, που οδηγεί στη σύνθεση ACC (δείτε παραπάνω). Το ACC μεταφέρεται πάνω στα φύλλα του φυτού από όπου προμηθεύεται το οξυγόνο (που λείπει από τις ρίζες). Το παραγόμενο (έτσι) αιθένιο, προκαλεί επιναστία. Μια πρόσφατη σκέψη για την (ωφέλεια του φυτού από αυτήν) την επιναστία είναι ότι η προς τα κάτω κατεύθυνση των φυτών λειτουργεί ως αντλία που κατευθύνει τον άνεμο προς τα κάτω (δηλαδή προς τις ρίζες)[81]. Το αιθένιο ίσως μπορεί να προκαλέσει την ανάπτυξη μιας βαλβίδας στο ξύλημα, αλλά η ιδέα (είναι) ότι τα φυτά εκμεταλλεύονται τη δύναμη του ανέμου για να αποστραγγίσουν το επιπλέον νερό από τις ρίζες τους, κάτι που κανονικά θα συνέβαινε με τη διαπνοή τους.
Φυσιολογικές αντιδράσεις των φυτών στην παρουσία αιθενίου
Όπως και οι άλλες φυτικές ορμόνες, το αιθένιο θεωρείται ότι έχει πλειοτροπικές επιδράσεις. Αυτό ουσιαστικά σημαίνει ότι τουλάχιστον κάποιες από τις επιδράσεις της ορμόνης είναι ασύνδετες (μεταξύ τους). Το πραγματικό αποτέλεσμα της επίδρασης του αιθενίου εξαρτάται τόσο από τον ιστό που επηρεάζει, όσο και από τις περιβαντολλογικές συνθήκες. Στην εξέλιξη των φυτών, το αιθένιο μπορεί απλά να είναι ένα μήνυμα προσυμφωνημένο για άσχετες (μεταξύ τους) χρήσεις κατά τη διάρκεια διαφορετικών περιόδων της εξελικτικής τους ανάπτυξης.
Λίστα των αντιδράσεων των φυτών στην παρουσία αιθενίου
Στο σπόρο: Αρχίζει μια τριπλή αντίδραση, παχαίνοντας και κονταίνοντας το υποκοτύλιο με την προσφορά ενός ακραίου γάτζου. Αυτό θεωρείται ότι είναι μια αντίδραση σε κάποιο εμπόδιο στο έδαφος, όπως μια πέτρα, επιτρέποντας στο νεοαναπτυσσόμενο φυτό να φτιάξει μια παράκαμψη στο εμπόδιο αυτό.
Στην επικονίαση, όταν η γύρη φθάνει στο στίγμα ο βιοσυνθετικόε πρόδρομος υου αιθενίου, το 1-αμινοκυκλοπροπυλομεθανικό οξύ (ACC), εκκρίνεται στα πέταλα και τελικά εκλύεται αιθένιο με την οξειδάση του ΑCC.
Σηματοδοτεί το μαρασμό φύλλων και ανθών.
Σηματοδοτεί τη γήρανση των ώριμων ξυλωδών κυττάρων προετοιμάζοντας τη χρήση τους από το φυτό.
Αναστέλλει την ανάπτυξη και το κλείσιμο των στομάτων (σε περίπτωση πλυμμύρας) εκτός από την περίπτωση φυτών που είναι συνηθισμένα στην κατάσταση αυτή, όπως το ρύζι.
Σηματοδοτεί την απόρριψη των φύλλων.
Ενεργοποιεί την ικανότητα των σπόρων για βλάστηση, προετοιμάζοντας έτσι τη σπορά τους.
Ενεργοποιεί την ανάπτυξη και τη βελτίωση των ριζικών τριχιδίων, αυξάνοντας έτσι την ικανότητα του φυτού για απορρόφηση νερού και ανόργανων (θρεπτικών για το φυτό) ουσιών.
Ενεργοποιεί τη τυχαία ανάπτυξη της ρίζας σε περίπτωση πλημμύρας.
Σηματοδοτεί την επιναστεία των φύλλων.
Σηματοδοτεί την έναρξη της διαδικασίας ωρίμανσης των καρπών.
Σηματοδοτεί μια κλιμακτηριακή αύξηση σε κάποιους καρπούς, γεγονός που τους κάνει να εκλύσουν πρόσθετο αιθένιο, οδηγώντας τελικά στη σήψη τους. Αυτό δικαιολογεί το γνωστό φαινόμενο - παροιμία «ένα σάπιο μήλο στο καλάθι θα κάνει κρι τα υπόλοιπα να σαπίσουν».
Επηρεάζει και τα γειτονικά φυτά, δηλαδή όχι μόνο αυτό που βιοσύνθεσε αιθένιο.
Το αιθένιο συντομεύει το χρόνο που απαιτείται για την εμπορική εκμετάλλευση πολλών καρπών επιταχύνοντας το μαρασμό των ανθών και την ωρίμανση των καρπών αυτών. Οι ντομάτες, οι μπανάνες και τα μήλα ωριμάζουν ταχύτερα με την παρουσία αιθενίου. Οι μπανάνες που τοποθετούνται κοντά σε άλλα φρούτα, παράγουν αρκετό αιθένιο για να επιταχύνουν την ωρίμανη όλων. Το αιθένιο συντομεύει ακόμη τη διάρκεια ανθοφορίας, επισπεύδοντας το μαρασμό και την απόρριψη των ανθών. Άνθη και φυτά που υποβάλλονται σε περιβαλλοντικό στρες, π.χ. κατά τη διάρκεια μεταφοράς, επεξεργασίας ή αποθήκευσης παράγουν αιθένιο υποβαθμίζοντας σημαντικά την εξωτερική τους εμφάνιση. Το φαινόμενο αυτό επηρεάζει (μεταξύ άλλων) και τα ακόλουθα φυτά: γαρύφαλο, γεράνι, πετούνια και τριαντάφυλλο[82]
Το αιθένιο, λοιπόν, ευθύνεται για σημαντικές οικονομικές ζημίες ανθοκόμων, ανθομεταφορέων και ανθοπωλών. Διάφοροι ερευνητές ανέπτυξαν αρκετούς τρόπους για να αποτρέψουν ή τουλάχιστον να παρεμποδίσουν τη σύνθεση αιθενίου από τα παραπάνω φυτά. Ανέπτυξαν διάφορους παρεμποδιστές της βιοσύνθεσης του αερίου, που περιλαμβάνουν την αμινοαιθοξυβινυλογλυκίνη (AVG, AminoethoxyVinylGlycine), το αμινοξυαιθανικό οξύ, (AOA, AminoOxyAcetic acid), ακόμη και ιόντα αργύρου (Ag+)[83][84].
Με την παρεμπόδιση της σύνθεσης του αιθενίου μειώνεται ο ρυθμός μαρασμού των παραπάνω φυτών κατά τη διάρκεια ανθυγιεινών (γι' αυτά), αλλά αναγκαίων για την εμπορία τους, συνθηκών. Ωστόσο, η παρεμπόδιση της σύνθεσης του αιθενίου από τα παραπάνω φυτά είναι λιγότερο αποτελεσματική για τις απώλειες μετά τη συγκομιδή, επειδή το εξωγενές αιθένιο έχει την ίδια σχεδόν επίδραση με το ενδογενές, του οποίου η παραγωγή αποτρέπεται με τις παραπάνω μεθόδους. Μια άλλη δυνατότητα είναι η παρεμπόδιση της αντίληψης της ύπαρξης αιθενίου από τα φυτά. Με τον τρόπο αυτό τα φυτά αυτά δεν αντιδρούν, ακόμη και με την παρουσία αιθενίου, αδιάφορο αν είναι ενδογενές ή εξωγενές. Οι παρεμποδιστές της αντίληψης του αιθενίου περιλαμβάνουν ενώσεις που έχουν παρόμοιο σχήμα (για να βουλώσουν κατά τα κάποιον τρόπο τους υποδοχείς αιθενίου), χωρίς όμως και να τους διεγείρουν όπως κάνει το αιθένιο. Ένα τέτοιο παράδειγμα είναι το 1-μεθυλοκλυκλοπροπένιο (1-MCP, 1-MethylCycloPropene).
Αντίθετα, επαγγελματίες καλλιεργητές καρποφόρων, που περιλαμβάνουν αυτούς που έχουν φυτείες ανανά, χρησιμοποιούν οι ίδιοι αιθένιο για να επιταχύνουν την έναρξη της ανθοφορίας ή και της ωρίμανσης των καρπών των φυτών τους. Αυτό μπορεί να γίνει τόσο με την τεχνητή έκλυση του αερίου σε ένα θάλαμο, όσο και με την τοποθέτηση μπανανόφλουδων, κοντά, σε κλειστή περιοχή.
Εφαρμογές
Το 80% του παραγώμενου αιθενίου χρησιμοποιούνται στις ΗΠΑ και στην Ευρώπη για την παραγωγή οξιρανίου, 1,2-διχλωροαιθάνιου και πολυαιθυλενίου. Σε μικρότερες ποσότητες το αιθένιο χρησιμοποιείται ως αναισθητικό (μίγμα 85% αιθενίου και 15% οξυγόνου) και στην πρόωρη ωρίμανση των φρούτων.
Τα πολυαιθυλένια με τη μεγάλη ποικιλία ιδιοτήτων τους καταναλώνουν πάνω από το 50% του αιθενίου σε όλον τον πλανήτη. Η κύρια χρήση των πουλαιθυλενίων είναι τα φύλλα πακεταρίσματος και οι πλαστικές σακούλες. Άλλες εφαρμογές τους περιλαμβάνουν κατασκευή πλαστικών σωλήνων, μονωτικών καλωδίων και πλαστικοποίση χαρτιών τράπουλας και άλλων.
Στα χρησιμότερα παράγωγα του αιθενίου περιλαμβάνονται το οξιράνιο, το στυρόλιο (μέσω αιθυλοβενζόλιου) και τα ανώτερα γραμμικά αλκένια (μέσω ολιγομερισμού).
Από αυτά το οξιράνιο αποτελεί κομβική πρώτη ύλη πολλών χημικών προϊόντων, ιδιαίτερα υγρών καθαριστικών, αιθυλενογλυκολών και παραγώγων αυτών.
Το στυρόλιο χρησιμοποιείται κυρίως για την παραγωγή πολυστυρολίου και διαφόρων παραγώγων του.
Τα ανώτερα γραμμικά αλκένια χρησιμοποιούνται ως πρώτες ύλες πολλών άλλων προϊόντων.
Τέλος το αιθένιο είναι η κομβική πρώτη ύλη για την παραγωγή του αερίου μουστάρδας, ενός χημικού πολεμικού αερίου με εκτεταμένη χρήση κατά τον Α΄ ΠΠ.
Υγεία και ασφάλεια
Το αιθένιο δεν είναι τοξικό, αλλά μπορεί να αποβεί επικίνδυνο σε υψηλές συγκεντρώσεις, στις οποίες προκαλεί ασφυξία, καθώς μειώνει τη συγκέντρωση του οξυγόνου.[85]
Πηγές
Γ. Βάρβογλη, Ν. Αλεξάνδρου, Οργανική Χημεία, Αθήνα 1972
↑H. S. Booth and M. B. Campbell (1926), Studies of Anesthetic Ethylene: I. The Odor of Ethylene. Anesthesia and Analgesia, July–August 1929, pages 221-226.
↑The Sycomore Fig (Html-Version) im Webarchiv vom 8. Januar 2012, PDF-Version (593 kb) vom 30. Mai 2009.
↑John Roach (2001-08-14). "Delphic Oracle's Lips May Have Been Loosened by Gas Vapors". National Geographic. Retrieved March 8, 2007.
↑Roscoe, Henry Enfield; Schorlemmer, Carl (1878). A treatise on chemistry 1. D. Appleton. p. 611.
↑Βλέπετε την ενότητα §4.2.1., για τη χρησιμοποιούμενη αντίδραση.
↑Winfried R. Pötsch, Annelore Fischer und Wolfgang Müller unter Mitarbeit von Heinz Cassebaum: Lexikon bedeutender Chemiker. Bibliographisches Institut, Leipzig 1988, S. 33−34, ISBN 3-323-00185-0.
↑Brown, James Campbell (July 2006). A History of Chemistry: From the Earliest Times Till the Present Day. Kessinger. p. 225. ISBN 978-1-4286-3831-0.
↑Appendix, §VIII, pp. 474 ff., Experiments and observations relating to the various branches of natural philosophy: with a continuation of the observations on air, Joseph Priestley, London: printed for J. Johnson, 1779, vol. 1.
↑Βλέπετε την ενότητα §5.5, για τη χρησιμοποιούμενη αντίδραση, με Cl όπου X
↑Τα δεδομένα προέρχονται εν μέρει από το «Table of periodic properties of thw Ellements», Sagrent-Welch Scientidic Company και Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, Σελ. 34.
↑Zhang, Q. (2003). «Recent Progress in Direct Partial Oxidation of Methane to Methanol». J. Natural Gas Chem.12: 81–89.
↑Olah, G., Molnar, A. “Hydrocarbon Chemistry” John Wiley & Sons, New York, 2003. ISBN 9780471417828.
↑Lunsford, J.H. (1995). «The catalytic coupling of methane». Angew. Chem., Int. Ed. Engl.34: 970–980. doi:10.1002/anie.199509701.
↑Η διεργασία που θα αναλυθεί παρακάτω περιλαμβάνει και τις τρεις (3) παραπάνω αντιδράσεις, καθώς και μερικές δευτερεύουσες.
↑ 29,029,129,229,3Kniel, Ludwig (1980). Ethylene, keystone to the petrochemical industry. New York: M. Dekker. ISBN0-8247-6914-7.Unknown parameter |coauthors= ignored (|author= suggested) (βοήθεια)
↑Τόσο το φυσικό αέριο, όσο και το αργό πετρέλαιο περιέχουν διάφορες θειούχες και οξυγονούχες ενώσεις, από τις οποίες παράγονται τα αέρια αυτά.
↑Korzun, Mikołaj (1986). 1000 słów o materiałach wybuchowych i wybuchu. Warszawa: Wydawnictwo Ministerstwa Obrony Narodowej. ISBN83-11-07044-X. OCLC69535236.
↑Bordwell, Frederick G.; Douglass, Miriam L. «Reduction of Alkylmercuric Hydroxides by Sodium Borohydride.». Journal of the American Chemical Society (1966), 88, pg 993-999.CS1 maint: Πολλαπλές ονομασίες: authors list (link)
↑ 41,041,141,2Condensation of formaldehyde with some unsaturated compounds H. J. Prins, Chemisch Weekblad, 16, 64, 1072, 1510 1919
↑Shi, Y. H.; Hall, C.; Ciszewski, J. T.; Cao, C. S.; Odom, A. L. (2003). «Titanium dipyrrolylmethane derivatives: rapid intermolecular alkyne hydroamination». Chemical Communications5: 586–587. doi:10.1039/b212423h.
↑E. Paterno, G. Chieffi (1909). «.». Gazz. Chim. Ital.39: 341.
↑G. Büchi, Charles G. Inman, and E. S. Lipinsky (1954). «Light-catalyzed Organic Reactions. I. The Reaction of Carbonyl Compounds with 2-Methyl-2-butene in the Presence of Ultraviolet Light». Journal of the American Chemical Society76 (17): 4327–4331. doi:10.1021/ja01646a024.
↑ 74,074,174,2Lin, Z.; Zhong, S. and Grierson, D., "Recent advances in ethylene research", J. Exp. Bot., 2009, 60, 3311-3336.
↑Gane R. (1934 id =). «Production of ethylene by some fruits». Nature134: 1008. doi:10.1038/1341008a0.
↑Crocker W, Hitchcock AE, Zimmerman PW. 1935 Similarities in the effects of ethlyene and the plant auxins. Contrib. Boyce Thompson Inst. 7. 231-48. Auxins Cytokinins IAA Growth substances, Ethylene
↑Yang, S. F., and Hoffman N. E. (1984). «Ethylene biosynthesis and its regulation in higher plants». Ann. Rev. Plant Physiol.35: 155–89. doi:10.1146/annurev.pp.35.060184.001103.