Зрізаний додекаедр

Тривимірна модель зрізаного додекаедра

Зрі́заний додека́едрнапівправильний багатогранник, належить до архімедових тіл, що складається із 12 правильних десятикутників і 20 правильних трикутників, 60 вершин і 90 ребер. Двоїстий до зрізаного додекаедра многогранник — триакісікосаедр.

Отримати даний багатогранник можна внаслідок зрізання всіх вершин правильного додекаедра на третину від первісної довжини ребра, внаслідок чого п'ятикутні площини стають десятикутними, а їхні вершини перетворюються на трикутники.

Використовується в ізохорно гіперболічному заповненні простору теселяцією, об'ємами зрізаного додекаедра з дисфеноїдно вершинною фігуристикою.

Ортогональні проєкції

Формули

Знаючи довжину ребра зрізаного додекаедра — a - отримуємо:

Математичний опис
Об'єм
Площа поверхні

Прямокутна система координат

Наступні декартові координати визначають вершини зрізаного додекаедра з довжиною ребра 2(τ-1), і з центром в початку координат —

Розгортка зрізаного додекаедра

: (0, ±1/τ, ±(2+τ)): (±(2+τ), 0, ±1/τ): (±1/τ, ±(2+τ), 0): (±1/τ, ±τ, ±2τ): (±2τ, ±1/τ, ±τ): (±τ, ±2τ, ±1/τ): (±τ, ±2, ±τ2): (±τ2, ±τ, ±2): (±2, ±τ2, ±τ)

де τ = (1 + √5) / 2 є золотим січенням (також пишеться φ).

Графічне зображення

Сферична плитка

Зрізаний додекаедр можна подати у вигляді сферичної плитки, і спроєктувати на площину у вигляді стереографічної проєкції. Ця проєкція буде конформною, зберігаючи кути, але не площини чи ребра багатогранника. Прямі лінії на сфері проєктуватимуться як дуги на площині.


центровано десятикутником

центровано трикутником
Сферична плитка Стереографічна проєкція (лицева)

Пов'язані багатогранники

Сімейство однорідних ікосаедричних багатогранників
Симетрія: [5,3], (*532) [5,3]+, (532)
{5,3} t{5,3} r{5,3} t{3,5} {3,5} rr{5,3} tr{5,3} sr{5,3}
Двоїсті до однорідних багатогранників
V5.5.5 V3.10.10 V3.5.3.5 V5.6.6 V3.3.3.3.3 V3.4.5.4 V4.6.10 V3.3.3.3.5

Джерела