Оці́нка густини́ (англ.density estimation) в теорії ймовірностей та статистиці — це побудова оцінки неспостережуваної підлеглої функції густини ймовірності на основі спостережуваних даних. Ця неспостережувана функція густини розглядається як густина, відповідно до якої розподілено велику сукупність, а дані зазвичай розглядаються як випадкова вибірка з тієї сукупності.
В цьому прикладі ми будуємо три оцінки густини для glu (концентрації глюкози в плазмі): одну умовну при наявності діабету, другу умовну при відсутності діабету, та третю безумовну відносно діабету. Умовні оцінки густини потім використовуються для побудови ймовірності діабету в залежності від glu.
Дані glu було отримано з програмного пакету MASS[3] мовою програмування R. В R ?Pima.tr та ?Pima.te дають повний звіт про дані.
Середнім значеннямglu у випадках діабету є 143.1, а стандартним відхиленням — 31.26. Середнім значенням glu у випадках не-діабету є 110.0, а стандартним відхиленням — 24.29. З цього ми бачимо, що в даному наборі даних випадки діабету пов'язано з вищими рівнями glu. Це можна зробити яснішим за допомогою графіків оцінюваних функцій густини.
Перший малюнок показує оцінки густини p(glu | diabetes=1), p(glu | diabetes=0), та p(glu). Ці оцінки густини є ядровими оцінками густини із застосуванням ґаусового ядра. Тобто, в кожній точці даних розташовано ґаусову функцію густини, а потім обчислено суму функцій густини над усім діапазоном даних.
З густини glu в залежності від діабету за допомогою правила Баєса ми можемо отримати ймовірність діабету в залежності від glu. Для стислості «diabetes» у цій формулі скорочено до «db.».
Другий малюнок показує оцінювану апостеріорну ймовірність p(diabetes=1 | glu). З цих даних виявляється, що підвищений рівень glu пов'язаний із діабетом.
Сценарій для прикладу
Наступні команди R створять наведені вище малюнки. Ці команди можна ввести до командного запрошення застосуванням копіювання та вставлення.
Зауважте, що наведена вище оцінка умовної густини використовує ширини смуг пропускання (англ.bandwidth), що є оптимальними для безумовних густин. Як альтернативу можна застосовувати метод Хола, Расіна та Лі (англ.Hall, Racine and Li, 2004)[4] та пакет R np[5] для автоматичного (керованого даними) вибору ширини смуги пропускання, що є оптимальним для оцінки умовних густин; див. введення до пакету np у начерку про нього.[6] Наступні команди R використовують функцію npcdens() для отримання оптимального згладжування. Зауважте, що реакція "Yes"/"No" є фактором.
Третій малюнок використовує оптимальне згладжування методом Хола, Расіна та Лі,[4] вказуючи, що ширина смуги пропускання безумовної густини, використана у другому малюнку вище, видає оцінку умовної густини, що може бути дещо недозгладженою.
↑Smith, J. W., Everhart, J. E., Dickson, W. C., Knowler, W. C. and Johannes, R. S. (1988). R. A. Greenes (ред.). Using the ADAP learning algorithm to forecast the onset of diabetes mellitus. Proceedings of the Symposium on Computer Applications in Medical Care (Washington, 1988). Los Alamitos, CA: IEEE Computer Society Press: 261—265. PMC2245318. (англ.)
Qi Li and Jeffrey S. Racine. Nonparametric Econometrics: Theory and Practice. Princeton University Press, 2007, ISBN 0-691-12161-3. (See Chapter 1.)(англ.)
D.W. Scott. Multivariate Density Estimation. Theory, Practice and Visualization. New York: Wiley, 1992. (англ.)