비단털쥐과
|
Read other articles:
Raffles Place (Singapura) Raffles Place adalah sebuah tempat wisata kuno yang sengaja dilestarikan oleh masyarakat Singapura dari zaman Sir Stamford Raffles sampai sekarang.[1] Tempat wisata ini mewah, terletak di pusat kota, dan merupakan salah satu tempat yang sering dikunjungi oleh para wisatawan asing.[2] Raffels Place terlihat di sebelah selatan Singapore River.[1] Raffles Place dapat dkatakan sebagai jantung bisnis Singapura.[1] Ketika malam hari, tempat ...
Old Ubi VillageInggrisOld Ubi VillageMelayuKampong Ubi Lama Markas Besar Pasukan Pertahanan Sipil Singapura, yang terletak di Ubi Lama. Kampong Ubi Lama adalah sebuah wilayah yang terletak di timur-tengah Singapura. Wilayah tersebut terletak di sebuah lahan yang berbentuk belah ketupat yang berbatasan dengan Airport Road di utara, Jalan Ekspres Pan-Island di selatan, Eunos Link di timur dan Jalan Paya Lebar di barat. Wilayah tersebut awalnya merupakan sebuah kampung Melayu yang dikenal dengan...
لوريس لوريس (البرتغال) لوريس (البرتغال) تقسيم إداري البلد البرتغال[1][2] التقسيم الأعلى محافظة لشبونة خصائص جغرافية إحداثيات 38°50′00″N 9°10′00″W / 38.833333333333°N 9.1666666666667°W / 38.833333333333; -9.1666666666667 [3] المساحة 167.24 كم² السكان التعداد السكاني 199,494 �...
AkuntansiKonsep dasarAkuntan · Pembukuan · Neraca percobaan · Buku besar · Debit dan kredit · Harga pokok · Pembukuan berpasangan · Standar praktik · Basis kas dan akrual · PABU / IFRSBidang akuntansiBiaya · Dana · Forensik · Keuangan · Manajemen · PajakLaporan keuanganNeraca · Laba rugi · Perubahan ekuitas · ...
College based in Indianapolis, Indiana American College of EducationTypePrivate for-profit online collegeEstablished2005PresidentGeordie HylandAcademic staff440[1]Students10,003[2]Undergraduates142[2]Postgraduates9,187[2]LocationIndianapolis, Indiana, United States41°52′56.29″N 87°38′14.28″W / 41.8823028°N 87.6373000°W / 41.8823028; -87.6373000Websitewww.ace.edu American College of Education (ACE) is a private for-profit onli...
Bishop of Bristol The Right ReverendJohn HumeBishop of SalisburyDioceseSalisburyIn office1766–1782PredecessorJohn ThomasSuccessorShute BarringtonOther post(s)Bishop of Bristol (1756–1758)Bishop of Oxford (1758–1766)Dean of St Paul's (1758–1766)Personal detailsBornc. 1706Died(1782-06-26)26 June 1782NationalityBritishDenominationAnglicanSpouse Lady Mary Hay (m. 1758)Alma materMerton College, OxfordCorpus Christi College, Oxford John Hume DD (c.1703...
Italian architect Lyme Park, Cheshire designed by Giacomo Leoni. The original Tudor mansion was transformed by Leoni into an Italian palazzo. The design was altered by English architect Lewis Wyatt's 19th-century addition of the box-like structure surrounding the centre pediment. This squat tower is in place of Leoni's intended cupola. Giacomo Leoni (1686 – 8 June 1746), also known as James Leoni, was an Italian architect, born in Venice. He was a devotee of the work of Florentine Renaissan...
Шалфей обыкновенный Научная классификация Домен:ЭукариотыЦарство:РастенияКлада:Цветковые растенияКлада:ЭвдикотыКлада:СуперастеридыКлада:АстеридыКлада:ЛамиидыПорядок:ЯсноткоцветныеСемейство:ЯснотковыеРод:ШалфейВид:Шалфей обыкновенный Международное научное наз...
WW2 US navy landing ship tank History United States NameUSS LST-740 BuilderDravo Corporation Neville Island Pennsylvania Laid down12 February 1944 Launched8 April 1944 Sponsored byMiss A. Jean Blocker Commissioned15 May 1944 Decommissioned8 March 1946 Stricken12 April 1946 Honors andawards5 battle stars (World War II) FateSold 14 June 1948 General characteristics Class and typeLST-542-class tank landing ship Displacement 1,625 long tons (1,651 t) light 4,080 long tons (4,145 t) full...
يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) بطولة العالم لألعاب القوى داخل الصالات 1989 البلد المجر المدينة المضيفة بودابست الدول المشاركة 62 الريا...
Resources for getting products to the consumer A marketing channel consists of the people, organizations, and activities necessary to transfer the ownership of goods from the point of production to the point of consumption. It is the way products get to the end-user, the consumer; and is also known as a distribution channel.[1] A marketing channel is a useful tool for management,[2] and is crucial to creating an effective and well-planned marketing strategy.[3] Another...
Stadion Rheinpark LokasiLokasiVaduz, LiechtensteinKoordinat47°08′25″N 9°30′37″E / 47.14028°N 9.51028°E / 47.14028; 9.51028Koordinat: 47°08′25″N 9°30′37″E / 47.14028°N 9.51028°E / 47.14028; 9.51028KonstruksiMulai pembangunan1 Juli 1997Dibuka31 Juli 1998Diperbesar2006Biaya pembuatanCHF 19 jutaData teknisKapasitas7,584 (5,873 tempat duduk)Ukuran lapangan105 x 68 mPemakaiFC VaduzTim nasional sepak bola LiechtensteinSunting ko...
1352–1576 kingdom in Bengal For other uses, see Bengal (disambiguation). Sultanate of BengalShahī Baṅgala (Bengali) Saltanat-i-Bangālah (Persian)Saltanat-Al-Bang͟hāliyyah (Arabic)1352–15391554–1576Extent of the Sultanate of Bengal under the Hussain Shahi dynasty.StatusSultanateCapitalPandua(1352–1390) Sonargaon[note 1][1](1390–1466) Gaur(1466–1565) Tanda(1565–1576)Common languagesBengali (official)Persian (official)Arabic (religious)Religion Sunni Isla...
Poem by Ezra Pound, written 1915 to 1962 This article is about the series of cantos written by Ezra Pound. For other uses, see Canto. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: The Cantos – news · newspapers · books · scholar · JSTOR (August 2022) (Learn how and when to remove this message) Opening page...
Rail system in the United States This article needs additional citations for verification. Relevant discussion may be found on the talk page. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Baltimore and Ohio Railroad – news · newspapers · books · scholar · JSTOR (November 2023) (Learn how and when to remove this message) Baltimore and Ohio RailroadAll rail lines o...
American police procedural and legal drama television series (1990–present) This article is about the original television series. For other uses, see Law and Order. For the most recent season, see Law & Order season 23. Law & OrderThe font used in the series title card, Friz Quadrata, is used in the identifying sign of One Police Plaza, headquarters of the NYPD.Genre Police procedural Legal drama Mystery Created byDick WolfStarring George Dzundza Chris Noth Dann Florek Michael Moria...
Pour les autres membres de la famille, voir Famille De La Gardie. Magnus Gabriel De la GardieFonctionsGrand sénéchal de Suède (en)1680-1684Per BrahePrésident de la Cour d'Appel de Svea1680-1682Knut KurckGustaf Adolf De la Gardie (d)Grand chancelier de Suède13 février 1660 - 10 juin 1680Erik Oxenstierna (d)Grand trésorier de Suède1652-1660Gabriel Bengtsson Oxenstierna (en)Gustaf Bonde (en)Grand Maréchal du Royaume1651-1653Åke Axelsson Natt och Dag (d)Adolphe-Jean de Palatinat-Deux-P...
Pour les articles homonymes, voir Georges II. Georges II de Galicie-VolhynieSceau de Boleslaw-Yuri IITitre de noblesseDucBiographieNaissance 1308Décès 1340VolodymyrFamille Dynastie PiastPère Trojden Ier de CzerskMère Marie de Galicie (en)Fratrie Euphémie de Mazovie (d)Siemovit III de MazovieCasimir Ier de Varsoviemodifier - modifier le code - modifier Wikidata Georges II Boleslas Trojdenowicz (en ukrainien Юрій II Болеслав Тройденович, en polon...
Entrée de Cinecittà. Le cinéma de propagande fasciste est l'« instrument cinématographique » du régime fasciste italien dans la première moitié du XXe siècle qui lui a servi à propager ses propres valeurs et idéaux aux masses populaires. Ce fut un phénomène artistique qui réussit à créer dans certains cas des œuvres cinématographiques de valeur. Comme le cinéma du Troisième Reich et une partie du cinéma soviétique, le cinéma italien de la période fascis...
مجموعة كانتورمعلومات عامةجزء من فترة الوحدة سُمِّي باسم جورج كانتور تعريف الصيغة C 0 := [ 0 , 1 ] , C n := C n − 1 3 ∪ ( 2 3 + C n − 1 3 ) , C := lim n → ∞ C n {\displaystyle C_{0}:=[0,1],C_{n}:={\frac {C_{n-1}}{3}}\cup \left({\frac {2}{3}}+{\frac {C_{n-1}}{3}}\right),{\mathcal {C}}:=\lim _{n\to \infty }C_{n}} الرموز في الصيغة C 0 {\displaystyle C_{0}} ∪ {\displaystyle ...