Este figura vârfului a duoantiprismei p−q (cu p și q mai mari decât 2). În ciuda faptului că p, q = 3 ar produce un echivalent geometric identic cu poliedrul Johnson, nu are o sferă circumscrisă care trece prin toate vârfurile, cu excepția cazului p = 5,q = 5/3, care reprezintă o mare duoantiprismă uniformă.
Numele de „girobifastigium” provine din latinăfastigium, care înseamnă și acoperiș în două ape.[4] În convenția standard de denumire a poliedrelor Johnson, bi- înseamnă două poliedre conectate la bazele lor, iar giro- înseamnă că cele două părți sunt răsucite una față de cealaltă.
Locul girobifastigiumului în lista poliedrelor Johnson, imediat înainte de bicupole, se explică prin considerarea lui o girobicupolă digonală. Așa cum celelalte cupole obișnuite au o secvență alternativă de pătrate și triunghiuri care înconjoară un singur poligon în partea de sus (un triunghi, un pătrat, respectiv un pentagon), fiecare jumătate a girobifastigiumului constă doar din pătrate și triunghiuri alternative, conectate în vârf doar printr-o latură (creastă).
Pentru a calcula aria și volumul unui girobifastigium cu fețe regulate și cu lungimea laturii a, se pot folosi formulele corespunzătoare pentru prisma triunghiulară. Aria:[6][7]
Biprisma Schmitt–Conway–Danzer este un poliedru echivalent din punct de vedere topologic cu girobifastigiumul, dar cu fețele paralelograme și triunghiuri neregulate în loc de pătrate și triunghiuri echilaterale. Ca și girobifastigiumul, poate umple spațiul, dar numai aperiodic, sau cu o simetrie elicoidală, nu cu un grup de simetrii tridimensional complet. Astfel, oferă o soluție parțială la problema einstein(d) tridimensională.[9][10]
Dual
Poliedrul dual al girobifastigiumului are 8 fețe: 4 triunghiuri isoscele, corespunzătoare vârfurilor de la creste ale girobifastigiumului și 4 paralelograme corespunzătoare vârfurilor ecuatoriale ale girobifastigiumului.
^ aben Alam, S. M. Nazrul; Haas, Zygmunt J. (), „Coverage and Connectivity in Three-dimensional Networks”, Proceedings of the 12th Annual International Conference on Mobile Computing and Networking (MobiCom '06), New York, NY, USA: ACM, pp. 346–357, arXiv:cs/0609069, doi:10.1145/1161089.1161128, ISBN1-59593-286-0