Wisconsin
|
Read other articles:
The Legend of Bhagat singhPoster rilis teatrikalSutradaraRajkumar SantoshiProduserKumar TauraniRamesh TauraniSkenarioAnjum RajabaliPemeranAjay DevganAmrita RaoSushant SinghD. Santosh Raj BabbarFarida JalalPenata musikA. R. RahmanSinematograferK. V. AnandPenyuntingV. N. MayekarDistributorTips Industries LimitedTanggal rilis7 Juni 2002Durasi155 menitNegaraIndiaBahasaHindiAnggaranRs. 3 KrorPendapatankotorRs. 6 Kror The Legend of Bhagat Singh adalah sebuah film biografi sejarah India 2002 m...
Indian cricketer Not to be confused with Mandeep Singh (cricketer, born 1999). For the Indian field hockey player, see Mandeep Singh (field hockey). Mandeep SinghMandeep during the 2019–20 Vijay Hazare TrophyPersonal informationBorn (1991-12-18) 18 December 1991 (age 32)[1]Jalandhar, Punjab, IndiaNicknameMandy[2]BattingRight-handedBowlingRight-arm mediumRoleAll-rounderInternational information National sideIndiaT20I debut (cap 62)18 June 2016 v Zimbab...
DiscogsURLdiscogs.comEponimDiskografi TipeMusikRegistration (en)OptionalLangueInggris (AS), Inggris (Inggris Raya), Jerman, Spanyol, Italia, Jepang, PrancisPengguna329,000PemilikZink Media, Inc.PembuatKevin LewandowskiService entry (en)November 2000; 23 tahun lalu (2000-11)Lokasi kantor pusatPortland, Oregon NegaraAmerika Serikat Total omsetIklan, biaya pasar penjualPeringkat Alexa 799 (Global: November 2016[update])[1]KeadaanAktifBlog resmihttps://blog.discogs.com Discog...
Гимн Казахской Советской Социалистической РеспубликиҚазақ Кеңес Социалистік Республикасының мемлекеттік гимніQazaq Keñes Sotsialistik Respublikasınnıñ memlekettik gimni Автор слов Каюм МухамедхановАбдильда ТажибаевГабит Мусрепов, 1943 Композитор Мукан Тулебаев, Евгений Брусиловский, Латиф Х...
PlanernayaПланeрнаяStasiun Metro MoskwaPemilikMoskovsky MetropolitenJalur!B9980540898509 7 Jalur Tagansko-Krasnopresnenskaya Jumlah peron1 peron pulauJumlah jalur2LayananBus: Т, 43, 88, 96, 102, 173, 267, 268, 383, 434, 469, 472, 678, 782, 817, 905; Trolleybus: 202, 203KonstruksiKedalaman6 meter (20 ft)Tinggi peron1ParkirTidak adaInformasi lainKode stasiun128SejarahDibuka30 Desember 1975Operasi layanan Stasiun sebelumnya Moscow Metro Stasiun b...
Lynn Louis HeinzerlingBorn(1906-10-23)October 23, 1906Birmingham, OhioDiedNovember 23, 1983(1983-11-23) (aged 77)ElyriaNationalityAmericanAlma materUniversity of AkronOccupationcorrespondent Lynn Louis Heinzerling (October 23, 1906 – November 21, 1983) was an American correspondent for the Associated Press, who won the Pulitzer Prize for his coverage of the Congo crisis in 1961.[1][2] Biography Lynn Heinzerling was born in Birmingham, Ohio, and raised in Elyria. Af...
この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: コルク – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年4月) コルクを打ち抜いて作った瓶の栓 コルク(木栓、...
Period of Japanese history from 1912 to 1926, under the reign of Emperor Taishō Taishō redirects here. For other uses, see Taishō (disambiguation). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Taishō era – news · newspapers · books · scholar · JSTOR (April 2014) (Learn how and when to remove this mess...
Численность населения республики по данным Росстата составляет 4 003 016[1] чел. (2024). Татарстан занимает 8-е место по численности населения среди субъектов Российской Федерации[2]. Плотность населения — 59,00 чел./км² (2024). Городское население — 76,72[3] % (20...
Model of the neural processing of vision and hearing The two-streams hypothesis is a model of the neural processing of vision as well as hearing.[1] The hypothesis, given its initial characterisation in a paper by David Milner and Melvyn A. Goodale in 1992, argues that humans possess two distinct visual systems.[2] Recently there seems to be evidence of two distinct auditory systems as well. As visual information exits the occipital lobe, and as sound leaves the phonological n...
Kind of stochastic process For the process in representation theory, see Restricted representation § Classical branching rules. In probability theory, a branching process is a type of mathematical object known as a stochastic process, which consists of collections of random variables indexed by some set, usually natural or non-negative real numbers. The original purpose of branching processes was to serve as a mathematical model of a population in which each individual in generation...
Temple in the USA, Colorado Denver Colorado TempleNumber40DedicationOctober 24, 1986, by Ezra Taft BensonSite7.5 acres (3.0 ha)Floor area29,177 sq ft (2,710.6 m2)Height90 ft (27 m)Official website • News & imagesChurch chronology ←Buenos Aires Argentina Temple Denver Colorado Temple →Frankfurt Germany Temple Additional informationAnnouncedMarch 31, 1982, by Spencer W. KimballGroundbreakingMay 19, 1984, by Gordon B. HinckleyOpen houseSeptember 8-27, ...
Historical concept This article is about the historical concept. For the documentary film, see Pax Americana and the Weaponization of Space. For a similar concept introduced by historian Wang Gungwu, see American Tianxia. Pax Americana[1][2][3] (Latin for American Peace, modeled after Pax Romana and Pax Britannica; also called the Long Peace) is a term applied to the concept of relative peace in the Western Hemisphere and later in the world after the end of World War I...
Township in Salem County, New Jersey, US Township in New Jersey, United StatesPennsville Township, New JerseyTownshipFinn's Point Rear Range Light SealPennsville Township highlighted in Salem County. Inset map: Salem County highlighted in New Jersey.map of Pennsville Township, New JerseyPennsville TownshipLocation in Salem CountyShow map of Salem County, New JerseyPennsville TownshipLocation in New JerseyShow map of New JerseyPennsville TownshipLocation in the United StatesShow map of the Uni...
Другети Титул: Граф Другет де Гомонна Родоначальник: Філіп Другет Період: 1315—1684 Місце походження: Салерно Підданство: Угорське королівство Маєтки: Гуменне Замки / палаци: Ужгородський замок Невицький замок Невицький замок на Закарпатті був власністю Другетів у XIV—XVII ст...
England in Scotland in 2014 England ScotlandDate 9 May 2014Captains Alastair Cook Kyle CoetzerOne Day International seriesResults England won the 1-match series 1–0Most runs Ian Bell (50) Michael Leask (42)Most wickets Josh Davey (3) James Tredwell (4)Player of the series Michael Leask (Sco) The England cricket team played a One Day International (ODI) match against Scotland on 9 May 2014 as a warm-up for their series against Sri Lanka and India later in the summer of 2014. Th...
Ini adalah nama Korea; marganya adalah Baek. Baek Jin-heeLahir8 Februari 1990 (umur 34)Seoul, Korea SelatanPendidikanYong In University - FilmPekerjaanAktrisTahun aktif2008-sekarangAgenJ,Wide-Company (2016-present)Nama KoreaHangul백진희 Alih AksaraBaek Jin-huiMcCune–ReischauerPaek Chin-hŭi Baek Jin-hee (lahir 8 Februari 1990) adalah aktris asal Korea Selatan.[1] Filmografi Film Tahun Judul Peran Catatan Ref 2009 The Naked Kitchen Murid wanita dengan parasol Bandhobi Mi...
MnetDiluncurkan1993 (sebagai Music Network)Maret 1995 (sebagai Mnet)PemilikCJ GroupSloganMusic Makes One! (2011); Where Asian Pop Lives (since 2012)NegaraKorea SelatanSaluran seinduktvN, OnStyle, Olive, OCN, XTM, CGV, Tooniverse, Go TV, National Geographic Channel KoreaSitus webhttp://www.mnet.com Mnet(엠넷;akronim dari Music Network) adalah stasiun televisi kabel Korea Selatan dengan tayangan musik dan hiburan. Salah satu dari televisi kabel berlangganan dari CJ Media. Target televisi ka...
Mary FitzgeraldFitzgerald on a 1915 Election posterBornMary Sinnott(1883-08-04)4 August 1883Gortins, Cleariestown, County Wexford, IrelandDied26 September 1960(1960-09-26) (aged 77)Johannesburg, South AfricaNationalityIrishOther namesPickhandle MaryOccupationTrade unionist Part of a series onSyndicalism Precursors Guild socialism Orthodox Marxism Revolutions of 1848 Utopian socialism Variants Anarchist Council communism De Leonism Fascist Green Nationalist Sorelianism Economics Co-...
En geometría, un vector normal a una cantidad geométrica (línea, curva, superficie, etc) es un vector de un espacio con producto escalar que contiene tanto a la entidad geométrica como al vector normal, que tiene la propiedad de ser ortogonal a todos los vectores tangentes a la entidad geométrica. Un vector normal no necesariamente es un vector normalizado o unitario. En el caso tridimensional, una superficie normal (o simplemente una normal) a un punto P es un vector que es perpendicul...