O fragmento 1-34 N-terminal da PTH humana (hPTH-(1-34)) foi cristalizado e a estrutura foi definida cunha resolución de 0,9 Å. A hPTH-(1-34) cristaliza como un dímero helicoidal longo, lixeiramente dobrado. As análises revelan que a conformación en hélice alfa estendida da hPTH-(1-34) é probablemente a conformación bioactiva.[3]
Aumenta a liberación de calcio do gran deposito contido nos ósos.[6] Durante a remodelación normal dos ósos prodúcese a reabsorción ósea, que é a destrución de parte do tecido óseo polos osteoclastos, a cal está indirectamente estimulada pola PTH. A estimulación é indirecta, xa que os osteoclastos non teñen receptores para a PTH; o que ocorre realmente é que a PTH se une aos osteoblastos, as células responsables de crear tecido óseo. A PTH estimula aos osteoblastos a incrementar a súa expresión do RANKL (ligando do receptor-activador do factor nuclear kappa-B) e inhibir a súa expresión de osteoprotexerina (OPG). A osteoprotexerina úneso ao RANKL e bloquea a súa interacción co RANK, que é o receptor do RANKL. A unión do RANKL ao RANK (facilitada pola diminución de osteoprotexerina) estimula aos precursores dos osteoclastos a formar novos osteoclastos, o cal finalmente fai aumentar a reabsorción ósea.
Aumenta a reabsorción activa de calcio e magnesio nos túbulos distais dos riles e na rama ascendente delgada da asa de Henle. A medida que o óso e degrada, libérase calcio e fosfato. Tamén decrece a reabsorción de fosfato, cunha perda neta na concentración plasmática de fosfato. Cando a relación calcio:fosfato se incrementa, hai máis calcio libre en circulación.[7]
Porén, a PTH aumenta a liberación ao sangue de fosfato do intestino e ósos. No óso, libérase un pouco máis de calcio ca de fosfato como resultado da destrución do tecido óseo. Nos intestinos, a absorción de calcio e fosfato está mediada por un incremento de vitamina D activada. A absorción de fosfato non é dependente da vitamina D como si o é a de calcio. O resultado final da liberación de PTH é unha pequena caída neta na concentración sérica de fosfato.
A secreción da hormona paratiroide está controlada principalmente pola concentración de calcio ([Ca2+]) no plasma sanguíneo por medio dunha retroalimentación negativa. As moléculas do receptor sensible ao calcio localizadas nas células da paratiroide detectan as concentracións de Ca2+. A proteína G asociada aos receptores de calcio detecta o calcio extracelular e pode encontrarse na superficie dunha ampla variedade de células distribuídas polo cerebro, corazón, pel, estómago, células C, e outros tecidos. Na glándula paratiroide, cando hai moito calcio extracelular non se produce hormona; así, a detección de altas concentracións de calcio extracelular causan a activación da cascada da proteína G asociada Gq a través da acción da fosfolipase C[10]. Esta hidroliza o fosfatidilinositol 4,5-bisfosfato (PIP2) e libéranse mensaxeiros intracelulares IP3 e diacilglicerol. Finalmente, estes dous mensaxeiros orixinan unha liberación de calcio dos seus depósitos intracelulares e un fluxo de calcio extracelular no espazo citoplasmático. O efecto desta sinalización por niveis elevados de calcio extracelular orixina unha concentración de calcio intracelular, que inhibe a secreción da PTH preformada almacenada en gránulos nas células da glándula paratiroide. A diferenza do mecanismo que utilizan a maioría das células secretoras, o calcio inhibe a fusión das vesículas e a liberación da PTH. Nas paratiroides, é o magnesio o que cumpre este papel de combinar estímulo e secreción. A hipomagnesia pode causar unha paralización da secreción de PTH e orixinar unha forma de hipoparatiroidismo que é reversible [11].
Estimuladores
Diminución da concentración de Ca2+ sérica.
Diminución suave da concentración sérica de Mg2+.
Aumento do fosfato sérico (o incremento do fosfato fai que este forme complexos co calcio sérico, formando fosfato cálcico, o cal reduce a estimulación dos receptores sensibles ao Ca, xa que non captan o fosfato cálcico, o que produce un incremento da PTH).
Se a causa está na glándula paratiroide denomínase hiperparatiroidismo primario. As causas son adenoma de paratiroide, hiperplasia de paratiroide e cáncer de paratiroide.
Se a causa está fóra da glándula, denomínase hiperparatiroidismo secundario. Pode darse na insuficiencia renal crónica. No hiperparatiroidismo secundario, os niveis de calcio séricos decrecen, o cal causa a hipersecreción de PTH por parte das glándulas paratiroides. A PTH actúa sobre os túbulos proximais dos riles facendo decrecer a reabsorción de fosfato (incrementando a súa excreción nos ouriños, e diminuíndo a súa concentración no soro sanguíneo), pero aumenta a reabsorción activa de calcio e magnesio nos túbuos distais e a rama ascendente delgada da asa de Henle. NOTA: na insuficiencia renal crónica, os riles non poden excretar fosfato nos ouriños. Neste caso de hiperparatiroidismo secundario, o calcio sérico decrece, pero o fosfato sérico increméntase.
Os niveis de PTH poden medirse no sangue de diversas formas: como PTH intacta; PTH N-terminal; parte media da PTH, ou como PTH C-terminal, e cada unha destas probas é útil en diferentes situacións clínicas.
↑Jin L, Briggs SL, Chandrasekhar S, Chirgadze NY, Clawson DK, Schevitz RW, Smiley DL, Tashjian AH, Zhang F (2000). "Crystal structure of human parathyroid hormone 1-34 at 0.9-A resolution". J. Biol. Chem.275 (35): 27238–44. PMID10837469. doi:10.1074/jbc.M001134200.
↑Savvides SN, Boone T, Andrew Karplus P (2000). "Flt3 ligand structure and unexpected commonalities of helical bundles and cystine knots". Nat Struct Biol.7 (6): 486–491. PMID10881197. doi:10.1038/75896.; rendered via PyMOL.
↑Page 1094 (The Parathyroid Glands and Vitamin D) in: Walter F., PhD. Boron (2003). Elsevier/Saunders, ed. Medical Physiology: A Cellular And Molecular Approaoch. p. 1300. ISBN1-4160-2328-3.
↑Randolph A. Chen and William G. Goodman. Role of the calcium-sensing receptor in parathyroid gland physiology. American Journal of Physiology. (review)
[1]Arquivado 09 de abril de 2013 en Wayback Machine.
↑Kensuke Takatsuki, David A. Hanley and Louis M. Sherwood. Effects of magnesium ion on parathyroid hormone secretion in vitro. Calcified Tissue international. Volume 32, Number 1, 201-206, DOI: 10.1007/BF02408542 . [2]Arquivado 13 de setembro de 2019 en Wayback Machine.
Martin TJ (2004). "Does bone resorption inhibition affect the anabolic response to parathyroid hormone?". Trends Endocrinol. Metab.15 (2): 49–50. PMID15080150. doi:10.1016/j.tem.2004.01.002.
Keutmann HT, Sauer MM, Hendy GN; et al. (1979). "Complete amino acid sequence of human parathyroid hormone". Biochemistry17 (26): 5723–9. PMID728431. doi:10.1021/bi00619a019.
Keutmann HT, Niall HD, O'Riordan JL, Potts JT (1975). "A reinvestigation of the amino-terminal sequence of human parathyroid hormone". Biochemistry14 (9): 1842–7. PMID1125201. doi:10.1021/bi00680a006.
Parkinson DB, Thakker RV (1993). "A donor splice site mutation in the parathyroid hormone gene is associated with autosomal recessive hypoparathyroidism". Nat. Genet.1 (2): 149–52. PMID1302009. doi:10.1038/ng0592-149.
Handt O, Reis A, Schmidtke J (1993). "Ectopic transcription of the parathyroid hormone gene in lymphocytes, lymphoblastoid cells and tumour tissue". J. Endocrinol.135 (2): 249–56. PMID1474331. doi:10.1677/joe.0.1350249.
Tonoki H, Narahara K, Matsumoto T, Niikawa N (1991). "Regional mapping of the parathyroid hormone gene (PTH) by cytogenetic and molecular studies". Cytogenet. Cell Genet.56 (2): 103–4. PMID1672845. doi:10.1159/000133059.
Klaus W, Dieckmann T, Wray V; et al. (1991). "Investigation of the solution structure of the human parathyroid hormone fragment (1-34) by 1H NMR spectroscopy, distance geometry, and molecular dynamics calculations". Biochemistry30 (28): 6936–42. PMID2069952. doi:10.1021/bi00242a018.
Nussbaum SR, Gaz RD, Arnold A (1990). "Hypercalcemia and ectopic secretion of parathyroid hormone by an ovarian carcinoma with rearrangement of the gene for parathyroid hormone". N. Engl. J. Med.323 (19): 1324–8. PMID2215618. doi:10.1056/NEJM199011083231907.
Ahn TG, Antonarakis SE, Kronenberg HM; et al. (1986). "Familial isolated hypoparathyroidism: a molecular genetic analysis of 8 families with 23 affected persons". Medicine (Baltimore)65 (2): 73–81. PMID3005800.
Tregear GW, van Rietschoten J, Greene E; et al. (1975). "Solid-phase synthesis of the biologically active N-terminal 1 - 34 peptide of human parathyroid hormone". Hoppe-Seyler's Z. Physiol. Chem.355 (4): 415–21. PMID4474131.
Andreatta RH, Hartmann A, Jöhl A; et al. (1973). "[Synthesis of sequence 1-34 of human parathyroid hormone]". Helv. Chim. Acta56 (1): 470–3. PMID4721748. doi:10.1002/hlca.19730560139.
Jacobs JW, Kemper B, Niall HD; et al. (1974). "Structural analysis of human proparathyroid hormone by a new microsequencing approach". Nature249 (453): 155–7. PMID4833516. doi:10.1038/249155a0.
Hendy GN, Bennett HP, Gibbs BF; et al. (1995). "Proparathyroid hormone is preferentially cleaved to parathyroid hormone by the prohormone convertase furin. A mass spectrometric study". J. Biol. Chem.270 (16): 9517–25. PMID7721880. doi:10.1074/jbc.270.16.9517.