Completeness (logic)

In mathematical logic and metalogic, a formal system is called complete with respect to a particular property if every formula having the property can be derived using that system, i.e. is one of its theorems; otherwise the system is said to be incomplete. The term "complete" is also used without qualification, with differing meanings depending on the context, mostly referring to the property of semantical validity. Intuitively, a system is called complete in this particular sense, if it can derive every formula that is true.

The property converse to completeness is called soundness: a system is sound with respect to a property (mostly semantical validity) if each of its theorems has that property.

Forms of completeness

Expressive completeness

A formal language is expressively complete if it can express the subject matter for which it is intended.

Functional completeness

A set of logical connectives associated with a formal system is functionally complete if it can express all propositional functions.

Semantic completeness

Semantic completeness is the converse of soundness for formal systems. A formal system is complete with respect to tautologousness or "semantically complete" when all its tautologies are theorems, whereas a formal system is "sound" when all theorems are tautologies (that is, they are semantically valid formulas: formulas that are true under every interpretation of the language of the system that is consistent with the rules of the system). That is, a formal system is semantically complete if:

[1]

For example, Gödel's completeness theorem establishes semantic completeness for first-order logic.

Strong completeness

A formal system S is strongly complete or complete in the strong sense if for every set of premises Γ, any formula that semantically follows from Γ is derivable from Γ. That is:

Refutation-completeness

A formal system S is refutation-complete if it is able to derive false from every unsatisfiable set of formulas. That is:

[2]

Every strongly complete system is also refutation complete. Intuitively, strong completeness means that, given a formula set , it is possible to compute every semantical consequence of , while refutation completeness means that, given a formula set and a formula , it is possible to check whether is a semantical consequence of .

Examples of refutation-complete systems include: SLD resolution on Horn clauses, superposition on equational clausal first-order logic, Robinson's resolution on clause sets.[3] The latter is not strongly complete: e.g. holds even in the propositional subset of first-order logic, but cannot be derived from by resolution. However, can be derived.

Syntactical completeness

A formal system S is syntactically complete or deductively complete or maximally complete or negation complete if for each sentence (closed formula) φ of the language of the system either φ or ¬φ is a theorem of S. Syntactical completeness is a stronger property than semantic completeness. If a formal system is syntactically complete, a corresponding formal theory is called complete if it is a consistent theory. Gödel's incompleteness theorem shows that any computable system that is sufficiently powerful, such as Peano arithmetic, cannot be both consistent and syntactically complete.

Syntactical completeness can also refer to another unrelated concept, also called Post completeness or Hilbert-Post completeness. In this sense, a formal system is syntactically complete if and only if no unprovable sentence can be added to it without introducing an inconsistency. Truth-functional propositional logic and first-order predicate logic are semantically complete, but not syntactically complete (for example, the propositional logic statement consisting of a single propositional variable A is not a theorem, and neither is its negation).[citation needed]

Structural completeness

In superintuitionistic and modal logics, a logic is structurally complete if every admissible rule is derivable.

Model completeness

A theory is model complete if and only if every embedding of its models is an elementary embedding.

References

  1. ^ Hunter, Geoffrey (1996) [1971]. Metalogic: An Introduction to the Metatheory of Standard First-Order Logic. University of California Press (published 1973). p. 94. ISBN 9780520023567. OCLC 36312727. (accessible to patrons with print disabilities)
  2. ^ David A. Duffy (1991). Principles of Automated Theorem Proving. Wiley. Here: sect. 2.2.3.1, p.33
  3. ^ Stuart J. Russell, Peter Norvig (1995). Artificial Intelligence: A Modern Approach. Prentice Hall. Here: sect. 9.7, p.286

Read other articles:

Ikan mas (Cyprinus carpio) memperebutkan makanan di kolam Istana Kerajaan Agdal, Marrakech, Maroko Burung-burung di Vestfjord, Norwegia menyantap sisa-sisa ikan setelah para penayan membersihkan jaring mereka. Dalam ekologi, feeding frenzy terjadi saat para predator berjumlah melebihi jumlah mangsa yang ada. Contohnya, sekawanan besar ikan dapat menyebabkan hiu di dekatnya, seperti hiu lemon, untuk menyantap mangsa bersamaan.[1] Tindakan tersebut dapat menyebabkan hiu-hiu menjadi liar...

 

The pagoda at Yakushi-ji, a Buddhist temple built during the Hakuhō period. The Hakuhō period (白鳳時代, Hakuhō jidai, white phoenix period) was an unofficial Japanese era name (年号, nengō, year name) of Emperor Tenmu[1] after Hakuchi[2] and before Suchō.[3] The duration of this discrete non-nengō timespan lasted from 673 through 686.[1] The Hakuhō period is more often used as a general term which describes a wider range of years. History of art H...

 

Saad Haririسعد الدين الحريري Perdana Menteri LebanonMasa jabatan18 November 2016 – 20 Januari 2020PresidenMichel AounPendahuluTammam SalamPenggantiHassan DiabPemimpin Pergerakan Masa DepanPetahanaMulai menjabat 20 April 2005PendahuluRafic HaririPenggantiPetahana Informasi pribadiLahirSa'aduddin Rafiq Al-Hariri18 April 1970 (umur 54)Riyadh, Arab SaudiKebangsaanLebanonPartai politikMovement of the FutureMarch 14 AllianceSuami/istriLara Bashir Al Adem (1998–s...

Pathogenic small single-stranded circular RNA For a variant of it which is dependent on viruses, see Virusoid. Viroid Virus classification Informal group: Subviral agents (unranked): Viroid Families PospiviroidaeAvsunviroidae Viroids are small single-stranded, circular RNAs that are infectious pathogens.[1][2] Unlike viruses, they have no protein coating. All known viroids are inhabitants of angiosperms (flowering plants),[3] and most cause diseases, whose respective e...

 

Civic square in Parramatta, New South Wales, Australia Centenary Square(1888–1988; 2014– )Bicentennial Square(1988–2014)The 1888 Victorian Free Classically-styled clock, with the drinking fountain removed, pictured in 2016TypeCivic squareLocationParramatta, Parramatta City Council, Sydney, New South Wales, AustraliaCoordinates33°48′55″S 151°00′11″E / 33.815399°S 151.003164°E / -33.815399; 151.003164EtymologyAustralian CentenaryAustral...

 

Physics-mathematics connection Lie groups and Lie algebras Classical groups General linear GL(n) Special linear SL(n) Orthogonal O(n) Special orthogonal SO(n) Unitary U(n) Special unitary SU(n) Symplectic Sp(n) Simple Lie groups Classical An Bn Cn Dn Exceptional G2 F4 E6 E7 E8 Other Lie groups Circle Lorentz Poincaré Conformal group Diffeomorphism Loop Euclidean Lie algebras Lie group–Lie algebra correspondence Exponential map Adjoint representation Killing formIndex Simple Lie algebra Loo...

Village in Giza Governorate, Egypt Dahshurمنشأة دهشورⲧⲁϩϭⲟⲩⲣSneferu's Red PyramidShown within EgyptLocationGiza Governorate, EgyptRegionLower EgyptCoordinates29°48′23″N 31°12′29″E / 29.80639°N 31.20806°E / 29.80639; 31.20806TypeNecropolisHistoryBuilderSneferuFounded2613–2589 BCPeriodsOld Kingdom to Middle KingdomSite notes UNESCO World Heritage SitePart ofPyramid fields from Giza to Dahshur part of Memphis and its Necropolis – the ...

 

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...

 

مهارات الدراسةمعلومات عامةصنف فرعي من مهارة جزء من أسلوب تدريسي جانب من جوانب تعلم تعديل - تعديل مصدري - تعديل ويكي بيانات تدل مهارات الدراسة أو إستراتيجيات التعلم، بمعنى آخر، على السلوك المتعلم أو المكتسب الذي يؤدي إلى التفوق في الدراسة، وينبغي أن يتوافر له شرطان أساسيان�...

Main article: List of Atlas launches List of Atlas launches 1957–1959 · 1960–1969 · 1970–1979 · 1980–1989 · 1990–1999 · 2000–2009 · 2010–2019 · 2020–2029 Launch statistics Rocket configurations 5 10 15 20 25 30 1957 1958 1959   Atlas-Able   Atlas A   Atlas B   Atlas C   Atlas D Launch sites 5 10 15 20 25 30 1957 1958 1959   Cape Canaveral LC-11   Cape Canaveral LC-12   Cape Canaveral LC-13   Cape Canaveral LC-14   Vande...

 

Government bank This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Bank of Bahrain and Kuwait – news · newspapers · books · scholar · JSTOR (March 2021) (Learn how and when to remove this message) Bank of Bahrain and Kuwait B.S.C (BBK)BBK LogoCompany typeFinancialTraded asBHSE:BBKIndustryBankingFinancial servic...

 

Lega Nazionale B 1983-1984Lega Nazionale B Competizione Lega Nazionale B Sport Calcio Edizione 85ª Organizzatore ASF-SFV Luogo Svizzera Partecipanti 16 Formula Girone all'italiana Risultati Vincitore  SC Zugo Promozioni  SC Zugo Winterthur Retrocessioni  Friburgo Nordstern Red Star Zurigo Cronologia della competizione 1982-1983 1984-1985 Manuale La Lega Nazionale B 1983-1984, campionato svizzero di calcio seconda serie, si concluse con la vittoria dello SC Zugo...

← січень → Пн Вт Ср Чт Пт Сб Нд 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31         2024 рік 23 січня — 23-й день року в григоріанському календарі. До кінця року залишається 342 дні (343 дні — у високосні роки). Цей день в історії: 22 січня—23 січня—24 січня Зміст 1 ...

 

«Желивскего»ŽelivskéhoЛиния AПражский метрополитен Дата открытия 19 декабря 1980 года Проектное название Olšanská Тип пилонная трёхсводчатая глубокого заложения Глубина заложения, м 26,6 Количество платформ 1 Длина платформы, м 148 м Ширина платформы, м 20,45 Архитекторы Eva Břusková Худо�...

 

American basketball player (born 1990) John ShurnaShurna with Morabanc AndorraNo. 14 – Gran CanariaPositionPower forwardLeagueLiga ACBPersonal informationBorn (1990-04-30) April 30, 1990 (age 34)Glen Ellyn, Illinois, U.S.NationalityAmerican / LithuanianListed height6 ft 9 in (2.06 m)Listed weight220 lb (100 kg)Career informationHigh schoolGlenbard West(Glen Ellyn, Illinois)CollegeNorthwestern (2008–2012)NBA draft2012: undraftedPlaying career2012–pre...

Questa voce sull'argomento centri abitati dell'Illinois è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Burnt Prairievillage(EN) Burnt Prairie, Illinois Burnt Prairie – Veduta LocalizzazioneStato Stati Uniti Stato federato Illinois ConteaWhite TerritorioCoordinate38°15′05.04″N 88°15′28.08″W38°15′05.04″N, 88°15′28.08″W (Burnt Prairie) Altitudine136 m s.l.m. Su...

 

جزء من سلسلة مقالات حولأنظمة العد نظام العد الهندي العربي نظام العد الهندي العربي عربية عربية مشرقية بنغالية غورموخية Indian سنهالية تاميليّة باليّة بورميّة زونخايّة غوجاراتية جاويّة خميريّة لاويّة منغوليّة تايلنديّة أنظمة شرق آسيا صينية أرقام سوجو أرقام هوكين يابانية كو�...

 

Russian linguist and etymologist In this name that follows Eastern Slavic naming customs, the patronymic is Emmanuilovich and the family name is Orël. This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Vladimir Orel – news · newspapers · books · scholar · JSTOR (July 2011) Vladimir OrelВлади...

Independent boarding and day school in York, North Yorkshire, England Queen Ethelburga's CollegiateAddressThorpe UnderwoodYork, North Yorkshire, YO26 9SSEnglandCoordinates54°01′41″N 1°17′36″W / 54.0280°N 1.2933°W / 54.0280; -1.2933InformationTypeIndependent Boarding & Day SchoolMottoTo be the best that I can with the gifts that I haveEstablished1912; 112 years ago (1912)FounderNathaniel WoodardTrustThe Collegiate FoundationChair School...

 

Un transformateur électrique (parfois abrégé en « transfo ») est une machine électrique[1],[2] permettant de modifier la tension efficace délivrée par une source d'énergie électrique alternative, une transformation qu'il effectue avec un excellent rendement. On distingue les transformateurs statiques et les commutatrices. Dans un transformateur statique, l'énergie est transférée du primaire au secondaire par l'intermédiaire du circuit magnétique que constitue la carca...