Ziehe um Ende A einen Kreisbogen (c1, mindestens ein Viertelkreis) mit der Seitenlänge als Radius.
Ziehe um Ende B einen Kreisbogen (c2, mindestens ein Viertelkreis) mit der Seitenlänge als Radius. Der Schnittpunkt der Kreise ist Punkt M.
Zeichne eine Gerade durch die Punkte B und M (mindestens doppelt so lang wie BM)
Zeichne einen Thaleskreis (ct) um M durch B. Man erhält Punkt E.
Zeichne eine Gerade durch die Punkte A und E. Der Schnittpunkt mit c1 ist Ecke D des späteren Quadrats.
Ziehe um D der einen Kreisbogen (c3) mit der Seitenlänge als Radius. Der Schnittpunkt mit c2 ist Ecke C.
Verbinde die Ecken zu einem Quadrat.
Konstruktion mit gegebener Diagonale
Gegeben: Die Diagonale d mit den Endpunkten A und C.
Konstruiere auf der Diagonale die Mittelsenkrechte (blau). Der Schnittpunkt mit der Diagonalen ist der Mittelpunkt M.
Ziehe um M einen Kreis durch A. Die Schnittpunkte mit der Mittelsenkrechten sind die beiden fehlenden Ecken B und D.
Verbinde die Ecken A, B, C, und D zyklisch miteinander.
Animationen
Quadrat mit gegebener Seitenlänge nutzt den Thaleskreis. Es funktioniert auch mit einem anderen Mittelpunkt M, Animation
Quadrat mit gegebener Diagonale, Animation
Ineinander liegende Quadrate
Der kanadischeMathematikerRoss Honsberger verglich in einer seiner Schriften unter anderem die Flächenmaßzahlen zweier ineinander liegender Quadrate und entdeckte folgenden Zusammenhang:
Verbindet man die vier Eckpunkte eines Quadrats geradlinig mit den Mittelpunkten der gegenüber liegenden Seiten, so entsteht ein zweites inneres Quadrat, dessen Flächenmaßzahl ein Fünftel der Flächenmaßzahl des Ausgangsquadrats beträgt.[1][2]
Diese Aussage lässt sich geometrisch durch Umordnung von Teilflächen veranschaulichen.
Die dunkelblauen kongruentenrechtwinkligen Dreiecke werden dem Ausgangsquadrat (linke Figur) entnommen und ergänzen die hellblauen Trapeze zu Quadraten (rechte Figur). Somit ist die linke Figur flächengleich zu der aus fünf kongruenten Quadraten bestehenden rechten kreuzförmigen Figur.
Der Anteil des roten Quadrats an der Gesamtfigur beträgt demnach ein Fünftel.
Zwei sich berührende Quadrate
Im Folgenden seien jeweils zwei Quadrate gegeben, die sich an einer Ecke berühren, und durch je zwei (grün und gelb gefärbte) sogenannte Flankendreiecke ergänzt werden. Aus der besonderen Lage der beiden Quadrate zueinander lassen sich Eigenschaften der Flankendreiecke bezüglich ihrer Flächenmaßzahlen und ihrer Transversalen herleiten.
Flächengleichheit von Flankendreiecken
Eigenschaft 1:
Die beiden Flankendreiecke zweier sich an einer Ecke berührender Quadrate sind flächengleich.
Algebraischer Beweis:
Wegen gilt . Durch Multiplikation mit auf beiden Seiten der Gleichung folgt weiter
.
Deshalb sind nach der Flächeninhaltsformel für allgemeine Dreiecke die beiden Flankendreiecke flächengleich.
Geometrischer Beweis:
Dreht man im Uhrzeigersinn das obere grüne Dreieck um 90° um den gemeinsamen Eckpunkt der beiden Quadrate, so erkennt man, dass das grüne und das gelbe Dreieck in der Länge einer Seite und der darauf errichteten Höhe übereinstimmen, woraus unmittelbar die behauptete Flächengleichheit folgt (Figur 1 und 2).
Transversalen in Flankendreiecken
Eigenschaft 2:
Die Höhe eines der beiden Flankendreiecke und die Seitenhalbierende des anderen Flankendreiecks zweier sich an einer Ecke berührender Quadrate liegen auf einer gemeinsamen Transversalen beider Dreiecke.
Geometrischer Beweis:
Dreht man das obere grüne Dreieck zunächst um 90° im Uhrzeigersinn und anschließend um 90° gegen den Uhrzeigersinn um den gemeinsamen Eckpunkt der beiden Quadrate, so liegen die gedrehten roten Strecken parallel zur Grundseite des gelben Dreiecks. Die äußeren Seiten der gedrehten Flankendreiecke sind ebenfalls parallel zueinander. Damit gilt . Hieraus folgt, dass die zur Grundseite des gelben Dreiecks gedrehten roten Strecken Seitenhalbierenden der grünen Dreiecke sind. Nach dem Zurückdrehen in die ursprüngliche Position liegen somit die roten Strecken auf einer gemeinsamen Transversalen beider Dreiecke (Figur 3 und 4).[3]
Quadrate in der erweiterten Vecten-Figur
Erweitert man die Vecten-Figur um drei weitere Quadrate wie in Figur 5, so ist die Flächeninhaltssumme der drei äußeren Quadrate dreimal so groß wie die der drei inneren Quadrate:
Beweis:
Bezüglich der Lage der Seiten und Winkel im mittleren Dreieck der Figur 5 werden die Standardbezeichnungen , und sowie , und in der üblichen Reihenfolge gegen den Uhrzeigersinn verwendet. Nach dem Kosinussatz und der Symmetrieeigenschaft
Einem Kreis sei ein Quadrat und einem Halbkreis mit demselben Radius ein weiteres Quadrat einbeschrieben. Dann hat das größere Quadrat den -fachen Flächeninhalt des kleineren Quadrats.
Die Beweisfiguren werden wie abgebildet in eine Parkettierung aus Einheitsquadraten eingebettet. Hierbei wurden die Seiten des größeren Quadrats so gedreht, dass der Satz des Pythagoras anwendbar ist. Das kleinere Quadrat hat den Flächeninhalt . Nach dem Satz des Pythagoras beträgt die Seitenlänge des größeren Quadrats . Demnach hat es den Flächeninhalt und ist somit -mal so groß wie das kleinere Quadrat.[5]
Quadrate am Sinusgraphen
Die Invarianz von Quadratsummen gilt für die Kathetenquadrate beim Satz des Pythagoras. In gewisser Analogie hierzu treten unter bestimmten Voraussetzungen invariante Quadratsummen auch im Zusammenhang mit der Sinusfunktion auf.[6][7]
Gegeben sei der ganz oberhalb der x-Achse verlaufende Graph einer Sinusfunktion mit der Gleichung für und ein beliebiger Punkt des Graphen, sowie ein Punkt links von und ein Punkt rechts von , wobei die x-Koordinaten von und eine halbe Periodenlänge, also , voneinander entfernt sind.
Dann hat die Gesamt-Flächenmaßzahl der beiden Quadrate über und unabhängig von der Lage des Punktes stets denselben Wert, nämlich .
In der abgebildeten Beispielfigur sind obige Voraussetzungen erfüllt. Die fünf verschieden gefärbten Quadratpaare haben dieselbe Flächenmaßzahl.
Dann beträgt die Gesamt-Flächenmaßzahl der beiden Quadrate nach zweimaliger Anwendung des Pythagoras-Satzes und elementaren Termumformungen unter Verwendung der Additionstheoreme:
Spiralen
Gegeben sei eine unendliche Folge von Quadraten, in der jedem Quadrat jeweils das nachfolgende Quadrat so einbeschrieben ist, dass jede Seite von durch den Eckpunkt des Nachfolgers halbiert wird. O.B.d.A. wird der Seite des Ausgangsdreiecks die Länge 1 zugeordnet. Dann gilt:
Linienspirale
Ist die halbe Seitenlänge des n-ten Quadrats (Figur 1), so ist eine geometrische Folge mit dem Bildungsgesetz und dem Grenzwert[8]
.
Flächenspirale
Beträgt ein Achtel der Flächenmaßzahl des n-ten Quadrats (Figur 2), so ist eine geometrische Folge mit dem Bildungsgesetz und dem Grenzwert[8]
.
Die Folgen und lassen sich geometrisch jeweils als Spirale darstellen.[8]
Die Zahlen unter den Abbildungen geben an, wie viele Ecken die regelmäßigen Polygone haben, die jeweils an einem Punkt zusammenstoßen. Die Innenwinkel ergeben zusammen 360°.
Der Begriff Quadrat wird in der synthetischen Geometrie der affinen Ebene verallgemeinert, indem eine der äquivalenten Aussagen, die ein Quadrat in der elementaren Geometrie beschreiben, zur Definition des Begriffes verwendet wird. Zum Beispiel wird für präeuklidische Ebenen die Existenz dieser Figuren zu einem zusätzlichen Axiom.
In der hyperbolischen Geometrie existieren keine Quadrate mit rechten Winkeln. Stattdessen haben Quadrate Winkel, die kleiner als ein rechter Winkel sind. Größere hyperbolische Quadrate haben kleinere Winkel.
Ein lateinisches Quadrat ist ein quadratisches Schema mit n Reihen und Spalten, wobei jedes Feld mit einem von n verschiedenen Symbolen belegt ist, so dass jedes Symbol in jeder Zeile und in jeder Spalte jeweils genau einmal auftritt. Die natürliche Zahl n wird Ordnung des lateinischen Quadrats genannt.
Ein magisches Quadrat der Kantenlänge n ist eine quadratische Anordnung der natürlichen Zahlen 1, 2, …, n², bei der die Summen der Zahlen aller Zeilen, Spalten und der beiden Diagonalen gleich sind. Diese Summe wird als die magische Zahl des magischen Quadrates bezeichnet.
Die Quadratur des Quadrates ist die Parkettierung eines gegebenen Quadrates mit kleineren Quadraten, deren Seitenlängenganzzahlige Werte haben. Interessant und anspruchsvoll wird die Aufgabenstellung durch folgende Zusatzbedingungen:
Keine zwei Teilquadrate sollen die gleiche Größe haben. Eine Quadrat-Parkettierung, die diese Bedingung erfüllt, heißt perfekt.
Wenn eine Teilmenge der Teilquadrate ein Rechteck bildet, heißt die Quadratur zusammengesetzt, andernfalls einfach.
Die Quadratur des Kreises ist ein klassisches Problem der Geometrie. Die Aufgabe besteht darin, aus einem gegebenen Kreis in endlich vielen Schritten ein Quadrat mit dem gleichen Flächeninhalt zu konstruieren. Sie ist äquivalent zur sogenannten Rektifikation des Kreises, also der Konstruktion einer geraden Strecke, die dem Kreisumfang entspricht. Das wiederum entspricht der Konstruktion der Kreiszahl aus der Strecke 1. Beschränkt man die Konstruktionsmittel auf Lineal und Zirkel, so ist die Aufgabe aufgrund der Transzendenz von unlösbar. Dies konnte 1882 von dem deutschen MathematikerFerdinand von Lindemann bewiesen werden.
↑Wolfgang Zeuge: Nützliche und schöne Geometrie - Eine etwas andere Einführung in die Euklidische Geometrie. Zweite korrigierte und ergänzte Auflage, Springer Spektrum, Springer-Verlag GmbH, Berlin 2021, ISBN 978-3-662-63830-9, S. 85–90
↑Wolfgang Zeuge: Nützliche und schöne Geometrie - Eine etwas andere Einführung in die Euklidische Geometrie. Zweite korrigierte und ergänzte Auflage, Springer Spektrum, Springer-Verlag GmbH, Berlin 2021, ISBN 978-3-662-63830-9, S. 94/95
↑Claudi Alsina, Roger B. Nelsen: Perlen der Mathematik - 20 geometrische Figuren als Ausgangspunkte für mathematische Erkundungsreisen, Springer Spektrum, Springer-Verlag GmbH Berlin 2015, ISBN 978-3-662-45460-2, Seiten 257, 258, 304
↑Hans Walser: Spiel mit Quadraten In: MU, Der Mathematikunterricht, Jahrgang 67, Heft 3–2021, S. 17–27, ISSN 0025-5807
↑Invariante Flächensumme auf der Sinuskurve PDF-Skript zum Vortrag von Hans Walser, Buchautor und Lehrbeauftragter für Mathematik an mehreren Schweizer Hochschulen, auf dem 24. Forum für Begabungsförderung in Mathematik 2023, Wolfratshausen, abgerufen am 13. August 2023
↑ abcHans Walser: Spiralen, Schraubenlinien und spiralartige Figuren - Mathematische Spielereien in zwei und drei Dimensionen, Springer Spektrum, Springer-Verlag GmbH Berlin 2022, ISBN 978-3-662-65131-5, Seiten 69–70