Rechtwinkliges Dreieck

Rechtwinkliges Dreieck
Rechtwinkliges Dreieck

Ein rechtwinkliges Dreieck ist ein Dreieck mit einem rechten Winkel. Es bildet die Grundlage für den Satz des Pythagoras, für Sinus und Kosinus und weitere trigonometrische Funktionen.

Bezeichnungen

Als Hypotenuse bezeichnet man die längste Seite eines rechtwinkligen Dreiecks. Sie liegt dem rechten Winkel gegenüber.

Als Kathete (aus dem griechischen káthetos, das Herabgelassene, Senkblei) wird jede der beiden kürzeren Seiten in einem rechtwinkligen Dreieck bezeichnet. Die Katheten sind also die beiden Seiten des rechtwinkligen Dreiecks, die den rechten Winkel bilden. In Bezug auf einen der beiden spitzen Winkel (in der Skizze ) des Dreiecks unterscheidet man die Ankathete dieses Winkels (die dem Winkel anliegende Kathete) und die Gegenkathete (die dem Winkel gegenüberliegende Kathete).

Berechnung und Konstruktion

Konstruktion SWW-Fall, gegeben sind Hypotenuse und Winkel
SSS-Fall: kleinstes Tripel:

Ein rechtwinkliges Dreieck ist durch drei Bestimmungsstücke vollständig bestimmt: den rechten Winkel, eine Seite sowie eine weitere Seite oder einen weiteren Winkel. Des Weiteren ist die Höhe gleich der Kathete sowie die Höhe gleich der Kathete .

  • Sind beide Katheten gegeben, so lässt sich das Dreieck nach dem SWS-Fall behandeln.
Die Kathete senkrecht auf die Kathete anordnen. Der Abstand ergibt die fehlende Hypotenuse und somit das Dreieck .
  • Sind eine Kathete und die Hypotenuse gegeben, so wird der SSW-Fall angewandt.
Die Hypotenuse halbieren und über den Mittelpunkt den Thaleskreis ziehen. Ist z. B. die Kathete gegeben, schneidet der Kreisbogen um mit dem Radius den Thaleskreis in . Die Verbindung mit vollendet das Dreieck .
  • Sind eine Seite und ein nicht-rechter Winkel gegeben, so lässt sich über die Winkelsumme der dritte Winkel bestimmen. Danach kann man das Dreieck nach dem WSW- bzw. SWW-Fall behandeln.
Ist z. B. die Kathete und der Winkel gegeben (WSW-Fall), wird ab eine gerade Linie gezogen, die mit der Kathete den Winkel bildet. Die abschließende Senkrechte auf ab schneidet die gerade Linie in und erzeugt somit das Dreieck .
Ist z. B., wie im nebenstehenden Bild zu sehen, die Hypotenuse und der Winkel gegeben (SWW-Fall), wird halbiert und über den Mittelpunkt der Thaleskreis gezogen. Beim Festlegen des Winkels mit Scheitel ergibt sich auf dem Thaleskreis und damit die Kathete . Die Verbindung mit liefert die Kathete und vollendet somit das rechtwinklige Dreieck .
  • Stehen im SSS-Fall die Seiten zueinander im Verhältnis gleich dem eines pythagoreischen Tripels, beispielsweise , ist das Dreieck rechtwinklig.
Mathematische Formeln zum rechtwinkligen Dreieck
Flächeninhalt

Rechtwinkliges Dreieck, Größen des Dreiecks

Hypotenuse
Kathete
Umfang
Höhe
Winkel
Inkreisradius
Ankreisradien
Umkreisradius

Sätze

Pythagoras

  • Die Beziehung zwischen den Längen der Katheten und der Hypotenuse beschreibt der Satz des Pythagoras, der auch als Hypotenusensatz bezeichnet wird. (Der Satz lautet: Sind und die Seitenlängen der Katheten eines rechtwinkligen Dreiecks und ist die Seitenlänge der Hypotenuse, so gilt die Gleichung ). Der Satz des Pythagoras ist ein Spezialfall des Kosinussatzes. Der Kosinus von ist 0, wodurch sich die Formel deutlich vereinfacht.
  • Anders formuliert besagt der Satz des Pythagoras, dass die Summe der Flächeninhalte der beiden Quadrate über den Katheten gleich dem Flächeninhalt des Quadrats über der Hypotenuse ist. Aus dieser Tatsache folgen der Kathetensatz und der Höhensatz (siehe auch Satzgruppe des Pythagoras). Die Höhe eines rechtwinkligen Dreiecks teilt die Hypotenuse in zwei Teile und , sodass die beiden Teildreiecke mit den Seiten , , und , , wiederum rechtwinklig sind. Bei Kenntnis zweier der sechs Angaben (, , , , und ) lassen sich die fehlenden vier anderen Werte aus den in folgender Tabelle aufgeführten Formeln berechnen.
Satz des Pythagoras
Kathetensatz
Höhensatz

Thales

Höhensatz, Kathetensatz und trigonometrische Funktion

  • Der Fußpunkt der Höhe teilt die Hypotenuse in zwei Hypotenusenabschnitte. Der Kathetensatz und der Höhensatz machen Aussagen über die Längen dieser Teilstrecken.
  • Die trigonometrischen Funktionen beschreiben die rechnerischen Zusammenhänge zwischen den Winkeln und den Seitenverhältnissen.

Satz von Eddy

Der Satz wurde erst im Jahr 1991 formuliert, „ist aber sicher schon sehr viel älter“.[1]

Bild 2: Beweis durch Kreiswinkelsatz (Zentriwinkelsatz)
Bild 1: Beweis durch Symmetrie

Die Winkelhalbierende des rechten Winkels eines rechtwinkligen Dreiecks teilt das Hypotenusenquadrat in zwei kongruente Flächen.

Es sei ein beliebiges Dreieck mit der Hypotenuse dem Hypotenusenquadrat und mit der Winkelhalbierenden des rechten Winkels am Scheitel Die Winkelhalbierende schneidet im Punkt sowie im Punkt das Hypotenusenquadrat in zwei Vierecke und

Beweise

A) Beweis durch Symmetrie, Bild 1,[1][2] gleichermaßen der Geometrische Beweis durch Ergänzung für den Satz des Pythagoras.

B) Ansatz für einen alternativen Beweis, Bild 2:

  • Die beiden Dreiecke und müssen kongruent sein.
  • Dies trifft nur zu, wenn die Winkelhalbierende durch den Mittelpunkt des Hypotenusenquadrates verläuft.

Zuerst wird der Mittelpunkt der Hypotenuse bestimmt, anschließend der Kreis mit dem Radius um eingezeichnet und die Mittelsenkrechte des Durchmessers mit den soeben erzeugten Schnittpunkten und eingetragen. Der Schnittpunkt entspricht dem Mittelpunkt des Hypotenusenquadrates Abschließend noch den Punkt mit verbinden.

Das einbeschriebene Dreieck hat am Scheitel den Zentriwinkel mit der Winkelweite gleich Nach dem Kreiswinkelsatz (Zentriwinkelsatz) hat der Winkel folglich die Winkelweite damit verläuft die Winkelhalbierende ebenfalls durch den Mittelpunkt des Hypotenusenquadrates

Somit bestätigt sich, die beiden Dreiecke und sind kongruent, demzufolge haben auch die Vierecke und gleiche Flächeninhalte.

Weitere Sätze

  • In dem rechtwinkligen Dreieck schneiden die Kreise um und mit den Radien , bzw. die Hypotenuse in den Punkten und .
Dann hat die Strecke dieselbe Länge wie der Durchmesser des Inkreises (Figuren 1 und 2).
Beweis:
Die Differenz aus der Summe der Kathetenlängen und der Hypotenusenlänge beträgt (Figur 2).
Somit hat die Überlappung der bis zur Hypotenuse gedrehten Katheten die Länge (Figuren 1 und 2).
  • In dem rechtwinkligen Dreieck ist die Summe der Inkreisradien , und der Dreiecke , und gleich der Länge der Höhe (Figuren 2, 3 und 4).
Beweis:
(Figuren 2, 3 und 4).
Hieraus folgt die Behauptung, nämlich [3][4]
  • In einem rechtwinkligen Dreieck halbiert die Winkelhalbierende des rechten Winkels auch den von der Höhe und der Seitenhalbierenden auf der Hypotenuse eingeschlossenen Winkel (Figur 5).
Figur 5
Figur 6
Beweis:
In dem gelben rechtwinkligen Dreieck sind die Winkelhalbierende, die Höhe und die Seitenhalbierende des rechten Winkels. Es ist zu zeigen, dass auch den Winkel halbiert.
Das Dreieck ist dargestellt als Teil eines Quadrats mit der Seitenlänge . Die Strecken , und sind bis zu ihren jeweiligen Schnittpunkten bzw. bzw. mit den Quadratseiten verlängert. Die Behauptung folgt dann aus der paarweisen Kongruenz der rechtwinkligen Dreiecke , und (Übereinstimmung in ihren Kathetenlängen a und b und dem eingeschlossenen rechten Winkel) sowie der daraus resultierenden Kongruenz der Dreiecke und , aus denen sich das zu der Diagonalen symmetrische (Drachen-)Viereck zusammensetzt.
  • Verbindet man in einem rechtwinkligen Dreieck die Kathetenmittelpunkte mit dem Höhenfußpunkt auf der Hypotenuse, so hat das aus den beiden Verbindungsstrecken und den beiden jeweils halben Katheten gebildete Viereck einen rechten Innenwinkel beim Höhenfußpunkt (Figur 6).
Beweis:
ist die Seitenhalbierende von im rechtwinkligen Dreieck und die Seitenhalbierende von im rechtwinkligen Dreieck . Deshalb ist Thaleskreisradius von und Thaleskreisradius von . Daraus folgt, dass das Dreieck gleichschenklig mit der Schenkellänge und den Basiswinkeln und und das Dreieck gleichschenklig mit der Schenkellänge und den Basiswinkeln und ist. Da die Winkel und bzw. und jeweils dieselben Weiten haben und das Dreieck rechtwinklig ist, addieren sich die Winkelweiten von und zu . Damit hat auch der Winkel die Weite , woraus die Behauptung folgt.[5]
Folgerung:
Wegen der Längengleichheit der Strecken und sowie der Strecken und ist das grüne Viereck ein spezielles Drachenviereck mit zwei gegenüberliegenden rechten Winkeln. Seine diagonale Symmetrieachse teilt es in die rechtwinkligen Dreiecke und , die einen gemeinsamen Thaleskreis besitzen. Hieraus folgt, dass das Drachenviereck auch ein Sehnenviereck ist.
  • Der Inkreisradius r eines rechtwinkligen Dreiecks mit den Kathetenlängen a und b und der Hypotenusenlänge c ist auf zwei Arten in Abhängigkeit von den drei Seitenlängen darstellbar (Figur 7):
Figur 8
Figur 7
Der Beweis basiert auf den Eigenschaften des Inkreises im rechtwinkligen Dreieck. Mit Hilfe von Figur 7 ergibt sich
,
woraus unmittelbar die erste Behauptung folgt.
In Figur 8 lässt sich
ablesen. Durch einfache Umformung erhält man sofort die zweite Behauptung.[6]

Ungleichungen

Abb. 1:
Abb. 2:

Für die Katheten und gilt , also . Addition von ergibt , also . Nach dem Satz des Pythagoras folgt daraus und die Ungleichungen

Die rechte Ungleichung ist ein Spezialfall der Ungleichung vom arithmetischen und geometrischen Mittel.

Die linke Ungleichung wird auch als Dreiecksungleichung für rechtwinklige Dreiecke bezeichnet (siehe Abb. 1 für den Fall der Ungleichheit und Abb. 2 für den Fall der Gleichheit).[7][8]

Division von durch die linke Ungleichung ergibt . Wegen folgt daraus

Aus folgt wegen , , für die Kehrwerte , also . Multiplikation mit auf beiden Seiten ergibt . Wegen folgen daraus die genaueren Ungleichungen

Die Gleichungen und gelten genau dann, wenn , also für ein rechtwinkliges und gleichschenkliges Dreieck mit den Innenwinkeln , und .

Ausgezeichnete Punkte

Rechtwinkliges Dreieck mit den vier „klassischen“ ausgezeichneten Punkten und darüber hinaus der Mittelpunkt des Feuerbachkreises mit dessen neun ausgezeichneten Punkten (davon nur fünf sichtbar) und der Eulerschen Geraden

Wie aus dem Bild ersichtlich, liegt von den vier „klassischen“ ausgezeichneten Punkten im rechtwinkligen Dreieck, der Höhenschnittpunkt (hellbraun) direkt im Scheitel des rechten Winkles, Eckpunkt , und der Umkreismittelpunkt (hellgrün) in der Mitte der Dreieckseite Der Schwerpunkt (dunkelblau) sowie der Inkreismittelpunkt (rot) sind innerhalb des Dreiecks.

Der Mittelpunkt des Feuerbachkreises (beides hellblau) ist in der Mitte der Strecke und ebenfalls innerhalb des Dreiecks. Auf dem Feuerbachkreis liegen dessen neun ausgezeichnete Punkte, von denen aber, aufgrund der Position des Höhenschnittpunktes nur fünf zu sehen sind. Es sind dies die Seitenmittelpunkte und sowie die Höhenfußpunkte und Zwei der drei Mittelpunkte der sogenannten oberen Höhenabschnitte, nämlich und liegen auf den Seitenmittelpunkten bzw. Der dazugehörende dritte Mittelpunkt liegt auf dem Scheitelpunkt Schließlich findet man den dritten Höhenfußpunkt auf dem Höhenschnittpunkt

Die Bezeichnungen der ausgezeichneten Punkte und deren Positionen sind mit denen des spitzwinkligen Dreiecks vergleichbar.[9] Die Punkte , , und befinden sich, wie bei allen Dreiecken, auf der Eulerschen Gerade (rot).

Andere Dreiecke

Commons: Rechtwinkliges Dreieck – Sammlung von Bildern, Videos und Audiodateien
Wiktionary: Hypotenuse – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
Wiktionary: Kathete – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise

  1. a b Wolfgang Zeuge: Nützliche und schöne Geometrie: Eine etwas andere Einführung in die Euklidische Geometrie. Springer Spektrum, Wiesbaden 2018, ISBN 978-3-658-22832-3, 2.7 Der Satz von Eddy, S. 30 (eingeschränkte Vorschau in der Google-Buchsuche [abgerufen am 16. August 2019]).
  2. Jörg Meyer: Symmetrie. (PDF) 3.Symmetrie beim Problemlösen. Universität des Saarlandes, Fachrichtung Mathematik, S. 4, abgerufen am 15. August 2019.
  3. Ross Honsberger: Gitter - Reste - Würfel Friedrich Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig 1984, ISBN 978-3-528-08476-9, Seite 29
  4. Huseyin Demir, Leon Bankoff: Problem E 1197, American Mathematical Monthly, Los Angeles, (Kalifornien) (1956), Seite 493
  5. Claudi Alsina, Roger B. Nelsen: Perlen der Mathematik - 20 geometrische Figuren als Ausgangspunkte für mathematische Erkundungsreisen, Springer Spektrum, Springer-Verlag GmbH Berlin 2015, ISBN 978-3-662-45460-2, Seite 81–83
  6. Roger B. Nelsen: Beweise ohne Worte, Deutschsprachige Ausgabe herausgegeben von Nicola Oswald, Springer Spektrum, Springer-Verlag Berlin Heidelberg 2016, ISBN 978-3-662-50330-0, Seite 28
  7. Roger B. Nelsen: Beweise ohne Worte, Deutschsprachige Ausgabe herausgegeben von Nicola Oswald, Springer Spektrum, Springer-Verlag Berlin Heidelberg 2016, ISBN 978-3-662-50330-0, Seite 18
  8. Canadian Mathematical Olympiad 1969 Problem 3, veröffentlicht von der Canadian Mathematical Society
  9. Arne Madincea: Der Feuerbachkreis … Der Satz über den 9-Punkte-Kreis: Aufgabe 1, S. 2 ff. (PDF) In: Materialien für Mathematikunterricht. Herder-Gymnasium Berlin, S. 7, abgerufen am 25. November 2018.

Read other articles:

Sungai SiakSiak River, Siak rivierSungai Siak mengalir melalui kota Siak Sri InderapuraLokasi mulut sungaiTampilkan peta SumatraSungai Siak (Indonesia)Tampilkan peta IndonesiaLokasiNegaraIndonesiaProvinsiRiauKabupaten/KotaSiak, Bengkalis, Rokan Hulu, PekanbaruCiri-ciri fisikHulu sungai  - elevasi0 m (0 ft) Muara sungaiSelat MalakaPanjang370 km (230 mi)Daerah Aliran SungaiSistem sungaiDAS SiakLuas DAS11.180 km2 (4.320 sq mi)Pengelolaan sungaiBP...

 

Joshua AngristBiographieNaissance 18 septembre 1960 (63 ans)ColumbusNom dans la langue maternelle Joshua David AngristNationalités israélienneaméricaineFormation Université de Princeton (doctorat)Oberlin CollegeActivités Économiste, économètre, professeur d'universitéEnfant Noam Angrist (d)Autres informationsA travaillé pour Université HarvardMassachusetts Institute of TechnologyMembre de Société d'économétrie (1998)Académie américaine des arts et des sciencesDirecteurs ...

 

Disambiguazione – Se stai cercando la concezione della divinità nell'Islam, vedi Dio (islam). Disambiguazione – Se stai cercando altri significati, vedi Allah (disambigua). Allāh scritto in caratteri arabi Una parte dei 99 nomi di Allāh. Particolare della Moschea di Abu Dhabi Allah (in arabo اَلله‎?, Allāh, pronunciato in italiano [alˈla]) è una parola araba che indica il nome di Dio. Nella religione islamica è il nome con cui Dio definisce sé stesso nel Corano. D...

Провальская степьукр. Провальський степ Категория МСОП — Ia (Строгий природный резерват) Основная информация Площадь587,5 га  Дата основания22 декабря 1975 года  Управляющая организацияНациональная академия наук Украины Расположение 48°09′01″ с. ш. 39°51′31″ ...

 

Indonesia and Thailand share a common maritime border in the northern part of the Straits of Malacca and the Andaman Sea to the north-east of Indonesia's Sumatera Island and to the west of the western coastline of southern Thailand. The maritime boundary runs between the India-Indonesia-Thailand tripoint in the north, and the Indonesia-Malaysia-Thailand tripoint in the south. The border was delimited through four agreements, with two involving third parties India and Malaysia as they determin...

 

Massacro di RosewoodLapide commemorativa del massacro TipoLinciaggio e incendio delle case Data1923 LuogoContea di Levy, Florida Stato Stati Uniti Coordinate29°13′59.88″N 82°55′59.88″W / 29.2333°N 82.9333°W29.2333; -82.9333Coordinate: 29°13′59.88″N 82°55′59.88″W / 29.2333°N 82.9333°W29.2333; -82.9333 ObiettivoPopolazione di colore del villaggio MotivazioneAccusa di violenza sessuale su una donna bianca da parte di un nero, poi rivel...

Children's television channel in the United Kingdom Television channel Pop MaxLogo used since 2017CountryUnited KingdomProgrammingLanguage(s)EnglishPicture format16:9 576i SDTVTimeshift servicePop Max +1OwnershipOwnerCSC Media Group (2008–2014)Sony Pictures Television (2014–2021)Narrative Entertainment UK Limited (2021–present)Sister channelsPopTiny PopGreat! TVGreat! MoviesGreat! ActionGreat! RomanceGreat! RealHistoryLaunched19 May 2008; 15 years ago (19 May 2008)ReplacedP...

 

This article is part of a series onJudiciary of India Law of India Administration Ministry of Law and Justice Department of Legal Affairs Legislative Department Department of Justice Law Commission of India Civil courts Supreme Court of India Chief Justice of India Judges of the supreme court High courts of India Chief justices of high courts Judges of high courts District courts of India Courts of subordinate judges District munsiff courts Criminal courts Supreme Court of India Chief Justice...

 

2007 Indian film directed by Apoorva Lakhia Shootout at LokhandwalaTheatrical release posterDirected byApoorva LakhiaWritten bySanjay GuptaSuresh NairApoorva LakhiaStory bySanjay GuptaSuresh NairApoorva LakhiaProduced byEkta KapoorSanjay GuptaStarringAmitabh BachchanSanjay DuttSuniel ShettyVivek OberoiAbhishek BachchanArbaaz KhanTusshar KapoorRohit RoyAditya LakhiaShabbir AhluwaliaCinematographyGururaj R. JoisEdited byBunty NagiMusic byStringsAnand Raj AnandMika SinghBidduEuphoriaDistributed ...

この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「�...

 

У этого термина существуют и другие значения, см. Горностай (значения). Горностай Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:Челюстнороты...

 

Questa voce sull'argomento calciatori italiani è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Plinio Farina Nazionalità  Italia Calcio Ruolo Difensore CarrieraGiovanili 19??-1920 Lombardia? (?)Squadre di club1 1919-1920 Lombardia? (?)1920-1924 Esperia21+ (0+)1924-1925 Milan3 (0)1926-1933 Comense146 (0) 1 I due numeri indicano le presenze e le reti segnate, per le sole partite di c...

Nerve fibers innervating most of the palate and pharynx Pharyngeal plexus of vagus nervesMuscles of the pharynx, viewed from behind, together with the associated vessels and nerves. (Pharyngeal plexus visible but not labeled.)DetailsIdentifiersLatinplexus pharyngeus nervi vagiTA98A14.2.01.159TA26338FMA6236Anatomical terms of neuroanatomy[edit on Wikidata] The pharyngeal plexus is a nerve plexus located upon the outer surface of the pharynx. It contains a motor component (derived from the ...

 

Category 4 Atlantic hurricane in 1948 Hurricane Six (Dog) Surface weather analysis of the hurricane on September 13Meteorological historyFormedSeptember 4, 1948 (1948-09-04)ExtratropicalSeptember 15, 1948DissipatedSeptember 16, 1948 (1948-09-17)Category 4 major hurricane1-minute sustained (SSHWS/NWS)Highest winds130 mph (215 km/h)Lowest pressure≥940 mbar (hPa); ≥27.76 inHgOverall effectsFatalities8 totalDamage$400,000 (1948 USD)Areas affectedBe...

 

Grand Prix Belgia 2018 Lomba ke-13 dari 21 dalam Formula Satu musim 2018← Lomba sebelumnyaLomba berikutnya → Tata letak sirkuit Spa-Francorchamps.Detail perlombaan[1]Tanggal 26 Agustus 2018Nama resmi Formula 1 2018 Johnnie Walker Belgian Grand PrixLokasi Sirkuit Spa-FrancorchampsStavelot, BelgiaSirkuit Fasilitas balapan permanenPanjang sirkuit 7.004 km (4.352 mi)Jarak tempuh 44 putaran, 308.052 km (191.415 mi)Cuaca BerawanPosisi polePembalap Lewis Hamilton Merc...

Disambiguazione – Se stai cercando altri significati, vedi Panhard (disambigua). Panhard Panhard & Levassor Société anonyme des anciens établissements Panhard-Levassor Société de constructions mécaniques Panhard-LevassorLogo Lo stabilimento Panhard & Levassor nel 1900 Stato Francia Forma societariaSociété anonyme Fondazione1886 a Parigi Fondata daRené PanhardÉmile Levassor Chiusura1967 (fusione in Citroën) Sede principaleParigi GruppoArquus SettoreAutomobilistic...

 

Sendelingsdrift looking towards the Namibian side of the border Sendelingsdrift is a border post between Namibia and South Africa in the Richtersveld. The Octha cable ferry crosses the Orange River (Garib) to Namibia.[1] It is guided by tethers on a high rope and is fitted with two outboard motors. The post is usually open from 8:00 AM to 4:00 PM. It also serves as an entrance to the ǀAi-ǀAis/Richtersveld Transfrontier Park. References ^ Pontoon at Sendelingsdrift. namahariplaasmar...

 

Lower house of Indonesia's parliament House of Representatives Dewan Perwakilan Rakyat2019–2024TypeTypeLower house of the People's Consultative Assembly Term limitsNoneLeadershipSpeakerPuan Maharani (PDI-P) since 1 October 2019 Deputy SpeakerLodewijk Freidrich Paulus (Golkar) since 30 September 2021 Deputy SpeakerSufmi Dasco Ahmad (Gerindra) since 1 October 2019 Deputy SpeakerRachmad Gobel (NasDem) since 1 October 2019 Deputy SpeakerMuhaimin Iskandar (PKB) since 1 Octobe...

Third and final section of the Tanakh This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Ketuvim – news · newspapers · books · scholar · JSTOR (April 2008) (Learn how and when to remove this message) Books of the Ketuvim   Three poetic books Psalms Proverbs Job Five Megillot (Scrolls) Song of Songs Ruth La...

 

Neighborhood in Manhattan, New York SoHo redirects here. For the area of London, see Soho. For other uses, see Soho (disambiguation). Neighborhood of Manhattan in New York CitySoHoNeighborhood of ManhattanCast-iron buildings on Grand Street between Lafayette Street and BroadwayLocation in New York CityCoordinates: 40°43′23″N 74°00′00″W / 40.723°N 74.000°W / 40.723; -74.000Country United StatesState New YorkCityNew York CityBoroughManhattanCommunit...