Ein schneidendes Geradenpaar bestimmt zwei Winkelhalbierende, in diesem Falle Geraden, die zueinander orthogonal sind. Jede dieser Winkelhalbierenden ist eine Symmetrieachse der geometrischen Figur, die von dem schneidenden Geradenpaar gebildet wird. Aus dieser Symmetrieeigenschaft folgt eine Charakterisierung der beiden Winkelhalbierenden als geometrischer Ort, die als Winkelhalbierendensatz bezeichnet wird.
In der synthetischen Geometrie werden die Winkelhalbierenden eines schneidenden Geradenpaars ebenfalls durch ihre Eigenschaft als Symmetrieachsen definiert. Die Existenz dieser Winkelhalbierenden ist dort eines der Axiome, die eine frei bewegliche präeuklidische Ebene kennzeichnen.
Ein Winkel ist durch seine beiden Schenkel, also die Halbgeraden mit gemeinsamen Anfang im Scheitel des Winkels, gegeben. Dann kann die Winkelhalbierende mit Zirkel und Lineal konstruiert werden: Um den Scheitelpunkt wird ein Kreis mit beliebigem Radius gezeichnet. An den Schnittpunkten mit den Schenkeln des Winkels wird der Zirkel erneut angesetzt. Dann zeichnet man jeweils einen Kreis mit gleichem Radius. Die Schnittpunkte dieser zwei Kreise liegen auf der Winkelhalbierenden.
Bei dieser Konstruktion wird benutzt, dass die Winkelhalbierende zugleich Mittelsenkrechte in dem gleichschenkligen Dreieck ist, das durch den Scheitel und die zwei ersten Hilfspunkte gegeben ist.
Liegen allgemeiner zwei Geraden vor, die sich in einem Punkt schneiden, so haben wir vier Winkel und damit vier Winkelhalbierende. Die Winkelhalbierenden zweier Scheitelwinkel fallen zusammen, also bleiben nur zwei Winkelhalbierende übrig. Diese zwei Winkelhalbierenden – die zueinander orthogonal sind – nennt man die Winkelhalbierenden der zwei Geraden (siehe Abbildung rechts).
Wenn wir wieder zu dem Fall eines Winkels zurückkommen, der von zwei Schenkeln (Halbgeraden) begrenzt wird, und nun diese Schenkel zu Geraden verlängern, dann bekommen wir zwei Geraden mit zwei Winkelhalbierenden. Die eine ist die Winkelhalbierende des ursprünglichen Winkels. Die andere ist die Winkelhalbierende seines Nebenwinkels. Sie heißt Außenwinkelhalbierende des ursprünglichen Winkels.
Ist in der Dreieckslehre von Winkelhalbierenden die Rede, so bezieht sich dieser Begriff meist auf die Innenwinkel, seltener auf die Außenwinkel. Hier wird die Winkelhalbierende eines Innenwinkels oft als abgekürzt. Dieses Kürzel steht dann zugleich auch für die Strecke auf der Winkelhalbierenden, die innerhalb des Dreiecks liegt, und in Konstruktionsaufgaben auch für deren Länge.
Für diese Winkelhalbierenden gelten unter anderem folgende Sätze:
Jede Winkelhalbierende eines Innenwinkels im Dreieck teilt die gegenüberliegende Seite im Verhältnis der anliegenden Seiten. Diese Aussage wird auch als Winkelhalbierendensatz bezeichnet und lässt sich mithilfe ähnlicher Dreiecke oder durch Anwendung des Sinussatzes beweisen.
Für die Länge der Halbierenden eines Innenwinkels und für die anliegenden Seiten der Länge und gilt die Beziehung:[1] Sind hingegen alle drei Seiten gegeben so gilt: [2]
Jede Winkelhalbierende schneidet die Mittelsenkrechte der dem Winkel gegenüberliegenden Seite auf dem Umkreis des (nicht-gleichschenkligen) Dreiecks. Dies ist der sogenannte Südpolsatz.
Winkelhalbierende im Viereck
Die Winkelhalbierenden eines Vierecks begrenzen im Allgemeinen ein Sehnenviereck. Beim Tangentenviereck ist es zu einem Punkt entartet. Beim Sehnenviereck ist das eingeschlossene Viereck orthodiagonal. Die Winkelhalbierenden eines Parallelogramms schließen im Allgemeinen ein Rechteck ein, die Winkelhalbierenden eines Rechtecks ein Quadrat, die Winkelhalbierende eines gleichschenkligen Trapezes ein Drachenviereck, die Winkelhalbierende eines Vierecks mit gleichen gegenüberliegenden Winkeln ein gleichschenkliges Trapez.
Als 2. Winkelhalbierende (Winkelhalbierende des II. und IV. Quadranten) bezeichnet man die Gerade mit der Gleichung . Dieser Funktionsgraph ist die Ursprungsgerade mit der Steigung −1.
Mithilfe von iterativer Winkelhalbierung kann ein Winkel auch in , , oder allgemein in deckungsgleiche Teile geteilt werden. Dazu werden die halbierten Winkel jeweils erneut halbiert. Um einen Winkel zum Beispiel in gleiche Teile zu teilen, müssen nacheinander 4 Winkelhalbierende konstruiert werden.
Dieses Verfahren lässt sich verallgemeinern: Ist ein Winkel gegeben, dann kann der Winkel konstruiert werden, wenn und natürliche Zahlen sind. Dabei hilft die Zahldarstellung im Binärsystem, denn der Quotient hat eine endliche Darstellung mit höchstens binären Nachkommastellen. Soll zum Beispiel der Winkel konstruiert werden, dann hilft die binäre Darstellung . Daraus ergibt sich . Der Winkel kann also konstruiert werden, indem am Scheitelpunkt nacheinander der Winkel im Uhrzeigersinn, der Winkel im Uhrzeigersinn und der Winkel gegen den Uhrzeigersinn konstruiert wird.
Es gilt folgender Satz: Ist ein Winkel gegeben und sind und natürliche Zahlen, dann kann der Winkel genau dann mit Zirkel und Lineal konstruiert werden, wenn eine Zweierpotenz ist, also . Für alle anderen natürlichen Zahlen ist das nicht möglich.[3]
Das geometrische Problem der Dreiteilung des Winkels, das seit dem 5. Jahrhundert v. Chr. bekannt ist, kann daher nicht mit Zirkel und Lineal gelöst werden.
Als Winkelhalbierenden-Axiom wird die folgende Aussage bezeichnet:
Zu zwei Geraden existiert eine Gerade , so dass bei der Achsenspiegelung an die Gerade auf die Gerade abgebildet wird.
Sind die Geraden parallel und verschieden, so ist deren Mittelparallele eine Gerade, die die geforderte Symmetrieeigenschaft hat. Da Mittelparallelen in einer präeuklidischen Ebene immer existieren, ist die wesentliche Forderung die nach einer Symmetrieachse für ein schneidendes Geradenpaar, also nach einer Winkelhalbierenden. Aus der Existenz einer Winkelhalbierenden folgt stets die Existenz genau einer zweiten, die senkrecht zur ersten ist.
Eine präeuklidische Ebene, die das Axiom für Winkelhalbierende erfüllt, wird als frei bewegliche Ebene bezeichnet.
Literatur
Friedrich Bachmann: Aufbau der Geometrie aus dem Spiegelungsbegriff. 2. Auflage, Berlin; Göttingen; Heidelberg 1973