Die platonischen Körper (nach dem griechischen Philosophen Platon) sind die Polyeder mit größtmöglicher Symmetrie. Jeder von ihnen wird von mehreren deckungsgleichen (kongruenten) ebenen regelmäßigen Vielecken begrenzt. Eine andere Bezeichnung ist reguläre Körper (von lat.corpora regularia).[1][2]
Es gibt fünf platonische Körper. Ihre Namen enthalten sie durch die griechisch ausgedrückte Zahl ihrer begrenzenden Flächen und eder als Abwandlung des griechischen Wortes ἕδρα (hedra) (s. auch Polyeder), deutsch (Sitz-)Fläche.
Tetraeder (Vierflächner, Oberfläche aus vier Dreiecken)
Hexaeder (Sechsflächner, Oberfläche aus sechs Quadraten) – der Würfel
Oktaeder (Achtflächner, Oberfläche aus acht Dreiecken)
Dodekaeder (Zwölfflächner, Oberfläche aus zwölf Fünfecken) – auch Pentagondodekaeder genannt, um auf die Oberfläche aus Fünfecken als seine Besonderheit hinzuweisen
Ikosaeder (Zwanzigflächner, Oberfläche aus zwanzig Dreiecken)
Die platonischen Körper sind konvex. In jeder Ecke des Körpers treffen jeweils gleich viele gleich lange Kanten zusammen, an jeder Kante treffen sich zwei deckungsgleiche Flächen, und jede Fläche hat gleich viele Ecken. Es ist also nicht möglich, irgendwelche zwei Körperecken, Kanten und Flächen aufgrund von Beziehungen zu anderen Punkten des Polyeders voneinander zu unterscheiden.
Alternativ lassen sich die platonischen Körper definieren als diejenigen Polyeder, für die es zu einem beliebigen Paar von Seitenflächen, Kanten oder Ecken immer eine Symmetrieabbildung gibt, die diese Flächen, Kanten oder Ecken vertauscht. Dies ist gemeint mit der größtmöglichen Symmetrie.
Verzichtet man auf die Ununterscheidbarkeit der Flächen und Kanten, spricht man von archimedischen Körpern. Verzichtet man dagegen auf die Ununterscheidbarkeit der Ecken und Kanten, spricht man von catalanischen Körpern. Verzichtet man auf die Konvexität, spricht man von regulären Polyedern und schließt damit die Kepler-Poinsot-Körper ein.
Die Bedingung, dass an einer Körperecke nur gleiche Polygone zusammenstoßen, wird nur von fünf Formen von Ecken erfüllt. Der Beweis dafür findet sich schon bei Euklid.[9] Er beruht auf folgenden Überlegungen:
Für eine beliebige Körperecke ist die Summe der Innenwinkel aller angrenzenden Flächen kleiner als 360°. Wäre sie genau 360°, würden die Flächen in einer Ebene liegen. Auch bei mehr als 360° wäre keine Ecke möglich.
Andererseits müssen sich an jeder Körperecke mindestens drei Flächen treffen.
Die Summe der Innenwinkel von 6 gleichseitigen Dreiecken, 4 Quadraten, 4 regelmäßigen Fünfecken oder 3 regelmäßigen Sechsecken sind bereits 360° oder größer. Die 360°-Summe der Innenwinkel von sechs gleichseitigen Dreiecken, vier Quadraten und drei regelmäßigen Sechsecken bedeutet, dass keine Ecke im Raum entsteht, sondern eine reguläre Parkettierung der Ebene stattfindet (siehe Abschnitt Platonische Körper als reguläre Parkettierungen der Sphäre). Bei einer Innenwinkelsumme von größer als 360° können sich entsprechende Polygone überhaupt nicht in nur einer gemeinsamen Ecke treffen.
Polygon
Innenwinkel
Polygone pro Ecke und Eck-Summenwinkel / Polyeder mit solchen Ecken
Zu jedem konvexen Polyeder lässt sich ein Dualkörper konstruieren. Bei platonischen Körpern erhält man diesen, indem man die Mittelpunkte benachbarter Seitenflächen miteinander verbindet. Duale Körper im engeren Sinne haben dieselbe Kantenkugel. Einander entsprechende Kanten der dualen Körper schneiden sich in einem rechten Winkel in dem Punkt, in dem sie die Kantenkugel berühren.
Somit hat das dualePolyeder genauso viele Ecken, wie das Ausgangspolyeder Flächen hat. Der Dualkörper hat zudem genauso viele Flächen, wie der Ausgangskörper Ecken hat. Letzteres kann man sich räumlich so vorstellen, dass jede vergrößerte Fläche des Dualkörpers eine Ecke des Ausgangskörpers abschneidet. Drittens gilt, dass das Dualpolyeder und sein Ausgangspolyeder die gleiche Anzahl an Kanten haben. Dies lässt sich ebenfalls aus obiger Konstruktion ablesen: Zwei benachbarte Seitenflächen bilden gemeinsam eine Kante des Ausgangspolyeders, und die „Verbindung der zwei Mittelpunkte“ dieser benachbarten Seitenflächen stellt eine Kante des Dualkörpers dar. Man spricht deshalb auch von dimensionsumkehrender Dualität. Und die Inversion des Schläfli-Symbols liefert das dazu duale Polyeder.
Bei den platonischen Körpern, als Untergruppe der konvexen Polyeder, gibt es bezüglich deren Dualkörper noch folgende Besonderheiten: Erstens haben hier Ausgangs- und Dualkörper denselben geometrischen Schwerpunkt. Zweitens ist der Dualkörper eines platonischen Körpers auch selbst ein platonischer Körper. Dabei bilden Hexaeder (Würfel) und Oktaeder sowie Dodekaeder und Ikosaeder jeweils ein duales Paar. Das Tetraeder ist zu sich selbst dual, wobei sich jedoch das duale Tetraeder in verkleinerter zentralsymmetrischer Lage befindet, d. h., es „steht auf dem Kopf“. Drittens: Wiederholt man obige Konstruktion und konstruiert den dualen Körper zum Dualkörper, so erhält man einen verkleinerten Ausgangskörper – also einen platonischen Körper, der durch Zentrische Streckung in den Ausgangskörper überführt werden kann. Beide haben somit denselben Schwerpunkt.
Zwei ineinander gesteckte zueinander duale Tetraeder, die ein Sterntetraeder bilden
Die platonischen Körper zeigen größtmögliche Symmetrie:
Ecken, Kanten und Flächen sind untereinander gleichartig, d. h., jede Ecke (Kante, Fläche) kann durch eine Kongruenzabbildung des Körpers auf jede andere Ecke (Kante, Fläche) abgebildet werden.
Die Symmetriegruppe wirkt transitiv auf den Fahnen. (Eine Fahne ist eine Ecke auf einer Kante auf einer Fläche.)
Die fünf platonischen Körper sind daher reguläre Polyeder. Die bei ihnen auftretenden Symmetriegruppen und ihre Untergruppen gehören zu den diskreten Punktgruppen. Duale platonische Körper haben dieselbe Symmetriegruppe. Das ist die Basis für die Konstruktion zahlreicher anderer Körper, z. B. der archimedischen Körper. Es gibt also nicht fünf, sondern nur drei dieser Gruppen: die Tetraedergruppe, die Würfelgruppe und die Ikosaedergruppe. Sie spielen in unterschiedlichen Zusammenhängen in der Mathematik eine Rolle.
Aufgrund ihrer Symmetrie haben homogen gefertigte Modelle platonischer Körper die Eigenschaft, dass sie bei einem Wurf mit exakt der gleichen Wahrscheinlichkeit auf jede ihrer Flächen fallen können. Die meisten Spielwürfel sind übrigens aufgrund der Vertiefungen für die Augenzahlen nicht absolut perfekt symmetrisch.
Projiziert man die Kanten eines platonischen Körpers aus dem Mittelpunkt auf eine Kugel mit demselben Mittelpunkt, z. B. auf die Umkugel, so erhält man eine Parkettierung der Kugeloberfläche durch zueinander kongruente regelmäßige sphärische Vielecke, wobei in jeder Ecke gleich viele Kanten unter gleichen Winkeln zusammentreffen. Diese Parkettierungen haben dieselben Symmetrien wie der Ausgangskörper. Insbesondere sind sie ebenfalls fahnentransitiv. Es sind die fünf regulären Parkettierungen der Sphäre, zwischen denen dieselben Dualitätsbeziehungen bestehen wie zwischen den Körpern. In anderem Zusammenhang spricht man auch von Landkarten und dualen Landkarten.
mit den oben genannten Lösungen. Diese Beziehung folgt auch aus dem eulerschenPolyedersatz, der die Anzahl der Ecken, der Kanten und der Flächen zueinander in Bezug stellt:
,
wobei die Konstante 2 für die Sphäre charakteristisch ist.[10]
Für die platonischen Körper gilt nicht nur , sondern auch . Dieses ausschließlich ganzzahligeGleichungssystem aus drei Gleichungen lässt sich auflösen und ergibt für die Anzahl der Ecken, der Kanten und der Flächen:
Es lässt sich also für jeden platonischen Körper nur durch die Vorgabe von und (siehe oben) die Anzahl der Ecken, Kanten und Flächen berechnen, ohne die genauen geometrischen Eigenschaften zu kennen.
Dafür reicht es, eine Diagonale (siehe Regelmäßiges Polygon - Diagonalen) des regelmäßigen-Ecks zu betrachten, das von den Ecken der Kanten, die an einer bestimmten Ecke zusammentreffen, wie ein Regenschirm aufgespannt wird, und die beiden gleich langen Höhen der Endpunkte (Ecken) dieser Diagonalen auf die Kante, die die betrachtete Ecke mit der von der Diagonalen übersprungenen Ecke verbindet. Auf dieses gleichschenklige Dreieck kann der Sinus angewendet werden.
Die Seiten dieses regelmäßigen-Ecks („Regenschirm“) sind die Diagonalen der Seitenflächen des platonischen Körpers, also der regelmäßigen -Ecke der Seitenlänge a, die an der betrachteten Ecke zusammentreffen. Sie haben die Länge
Die Kantenlänge erhält man u. a. aus der allgemeinen Formel für den Umkreisradius . Darin ist die Anzahl der Flächen/Kanten des platonischen Körpers, die an einer Ecke zusammentreffen bzw. der Winkel zwischen benachbarten Flächen (siehe Formeln).
Euklid erklärt und beweist die Kantenlängen der fünf platonischen Körper, indem er sie mittels einer Kugel mit gegebenem Durchmesser umschreibt.[11] Die nebenstehende Konstruktionskizze zeigt die so ermittelten Kantenlängen. Werden die Werte der Kantenlängen nach obiger Formel ermittelt, können sie jeweils in einen arithmetischer Ausdruck umgeformt werden. Der Faktor steht dabei für den Umkugelradius .
Ein platonischer Körper kann dann als einbeschrieben in einen anderen platonischen Körper bezeichnet werden, wenn alle seine Ecken die Seitenflächen des äußeren Körpers berühren. In dem folgenden Schema sind auch einige interessante Fälle enthalten, wo nicht alle Ecken auf den Seitenflächen liegen. Außerdem sind in den Abbildungen außer den Ecken auch die Kanten und Flächen verdeutlicht, die jeweils den äußeren Körper berühren. Darunter ist jeweils ihre Anzahl angegeben.
Der graphentheoretische Durchmesser und der graphentheoretische Radius stimmen überein, weil alle Knoten jeweils graphentheoretisch äquivalent zueinander sind und sich mit Hilfe von Permutationen zusammen mit dem Graphen auf einen isomorphen Graphenabbilden lassen. Daraus folgt, dass alle Knoten dieselbe Exzentrizität haben und sowohl zum Rand als auch zum Zentrum des Graphen gehören.
Netze
Platonische Körper haben wie alle Polyeder verschiedene Netze (siehe Übersicht oben). Es gibt nämlich verschiedene Möglichkeiten, ein hohles Polyeder durch Aufschneiden von einigen Kanten aufzuklappen und in der Ebene auszubreiten. Ist die Anzahl der Kanten und die Anzahl der Flächen des Polyeders, dann entsteht durch Aufschneiden von Kanten ein Körpernetz. Die Ecken liegen dabei offensichtlich auf dem Rand des Netzes. Die anderen Kanten verbinden jeweils die regelmäßigen Polygone des Netzes.
Jeder platonische Körper hat wie jedes konvexe Polyeder einen ihm zugeordneten ungerichteten planaren Graphen. Dieser Graph ist regulär, denn von jedem Knoten gehen Kanten aus, sodass der Grad für alle Knoten gleich ist, wobei die Anzahl der Knoten ist. Der Knotengrad ist gleich der Anzahl der Flächen (und Kanten), die in jeder Ecke des platonischen Körpers zusammentrifft. Bei planaren Graphen ist die genaue geometrische Anordnung der Knoten unwesentlich. Wichtig ist allerdings, dass sich die Kanten nicht schneiden müssen. Die Knoten dieses Graphen entsprechen den Ecken des Polyeders.
Die aufgeschnittenen Kanten jedes Netzes bilden zusammen mit den Ecken (Knoten) einen Spannbaum des Graphen. Jedes Netz entspricht genau einem Spannbaum und umgekehrt, sodass hier eine eineindeutige (bijektive) Zuordnung zwischen Netzen und Spannbäumen besteht. Wenn man ein Körpernetz ohne das äußere Gebiet als Graphen betrachtet, erhält man als dualen Graphen jeweils einem Baum mit Knoten und Kanten und dem maximalen Knotengrad. Jede Fläche des platonische Körpers wird dabei einem Knoten des Baums zugeordnet.
Die Anzahl der Farben, die mindestens nötig ist, um die Knoten eines Graphen so zu färben, dass benachbarte Knoten immer unterschiedlich gefärbt sind, wird chromatische Zahl genannt (siehe Knotenfärbung). Die entsprechende Zahl für die Kanten nennt man chromatischer Index (siehe Kantenfärbung). Bei den Graphen der platonischen Körpern ist sie gleich dem (maximalen) Knotengrad. Im Zusammenhang mit dem Satz von Vizing werden sie Klasse-1-Graphen genannt.
Die Knoten des Ikosaedergraphen können mit 4 Farben so gefärbt werden, dass benachbarte Knoten immer unterschiedlich gefärbt sind. Dies bedeutet, dass die chromatische Zahl dieses Graphen gleich 4 ist (siehe Knotenfärbung). Außerdem können die Kanten mit 3 Farben so gefärbt werden, dass benachbarte Kanten immer unterschiedlich gefärbt sind. Mit 2 Farben ist das nicht möglich, sodass der chromatische Index für die Kantenfärbung gleich 3 ist.
Die Knoten dieses dualen Graphen werden dabei den Gebieten des ursprünglichen Graphen eineindeutig (bijektiv) zugeordnet und umgekehrt (siehe bijektive Funktion). Für den Dodekaedergraphen (siehe Abbildungen) gilt zum Beispiel: Die Knoten des dualen Ikosaedergraphen können mit 4 Farben so gefärbt werden, dass benachbarte Knoten immer unterschiedlich gefärbt sind, aber nicht mit 3 Farben, sodass die chromatische Zahl des Ikosaedergraphen gleich 4 ist. Daraus lässt sich indirekt schließen: Weil die chromatische Zahl gleich 4 ist, sind 4 Farben für eine solche Flächenfärbung des Dodekaeders oder eine Färbung der Gebiete des Dodekaedergraphen nötig.[18]
Wegen der starken Regelmäßigkeit der platonischen Körper kann man leicht andere Körper von ihnen ableiten, die auch wieder sehr regelmäßig sind. Man muss dazu nur die gleichen Konstruktionen symmetrisch auf Flächen, Kanten oder Ecken anwenden. Ein Beispiel dafür sind die dualen Körper, die sich dadurch ergeben, dass man den Mittelpunkt jeder Fläche mit den Mittelpunkten der angrenzenden Flächen verbindet.
Abgestumpfte platonische Körper
Wenn man von einem platonischen Körper ausgehend ein abgestumpftes Polyeder erzeugt, indem man seine Ecken so abschneidet, dass danach alle Kanten gleich lang sind, so erhält man einen archimedischen Körper. Dieser Körper entsteht auch als Schnitt des platonischen Körpers mit seinem passend vergrößerten dualen Körper.
Archimedische Körper sind Beispiele für ziemlich regelmäßige Körper, bei denen Polygone verwendet werden, die zwar regelmäßig, aber von unterschiedlicher Seitenzahl sind.
Verwendet man für die Pyramiden gleichseitige Dreiecke, hat man Beispiele für Polyeder, die vollständig aus gleichen Polygonen bestehen, bei denen aber unterschiedlich viele in den Ecken zusammenstoßen.
Verallgemeinerung
Der Schweizer Mathematiker Ludwig Schläfli bestimmte 1852 die -dimensionalen Verwandten der platonischen Körper – allerdings blieb sein Werk lange unbeachtet.[24] Es stellte sich heraus, dass es im 4-dimensionalen Raum zu jedem der fünf regulären 3-dimensionalen Körper (3-Polytope) eine 4-dimensionale Entsprechung, ein reguläres 4-Polytop, gibt, dessen „Oberfläche“ (3-dimensionaler Rand) aus einer Anzahl von „Zellen“ zusammengesetzt ist (jede Zelle ein reguläres 3-Polytop): den 5-Zeller (Pentachoron) aus 5 Tetraedern,[25] den 8-Zeller (Tesserakt) aus 8 Würfeln,[26] den 16-Zeller (Hexadekachor) aus 16 Tetraedern,[27] den 120-Zeller (Hekatonikosachor) aus 120 Dodekaedern[28] und den 600-Zeller (Hexakosichor) aus 600 Tetraedern.[29] Dann gibt es noch ein sechstes reguläres 4-Polytop: den 24-Zeller (Ikositetrachor), der aus 24 Oktaedern zusammengesetzt ist.[30]
Die platonischen Körper wurden seit der Antike studiert. Die Pythagoreer (6. Jahrhundert v. Chr.) unterschieden zumindest zwischen Tetraeder, Hexaeder und Dodekaeder. Das Oktaeder wurde möglicherweise noch nicht beachtet, weil es als Doppelpyramide angesehen wurde. Der Athener Theaitetos (415–369 v. Chr.) kannte auch Oktaeder und Ikosaeder. Er bewies, dass es nur fünf konvexe reguläre Polyeder geben kann.
Der griechische Philosoph Platon (ca. 427–347 v. Chr.), ein Zeitgenosse Theaitetos’, wurde der Namensgeber für die fünf Körper. In seinem Werk Timaios (Kap. 20, 53c4–55c6) beschrieb er sie ausführlich. Er band die platonischen Körper in sein philosophisches System ein, indem er sie (ausgenommen Dodekaeder) den vier Elementen zuordnete (Kap. 21, 55c7–56c7): Feuer stand für das Tetraeder, Luft für das Oktaeder. Das Ikosaeder wurde mit Wasser assoziiert, das Hexaeder mit Erde. Das Dodekaeder ließ sich nach dieser Theorie mit dem von Aristoteles postulierten fünften Element Äther (quinta essentia)[32] gleichsetzen.
Euklid (360–280 v. Chr.) beschrieb die platonischen Körper im XIII. Buch seiner Elemente (§§ 13–17). Darin bewies er unter anderem, dass es genau fünf gibt (§ 18a). Hypsikles nahm im später angefügten „XIV. Buch“ (aus dem 2. Jahrhundert v. Chr.) einige Volumenberechnungen vor. Das „XV. Buch“ (aus dem 6. Jahrhundert n. Chr.) enthielt weitere Entdeckungen griechischer Mathematiker bezüglich der fünf regulären Körper.
Mit dem Aufkommen der Perspektive verarbeiteten mehrere Künstler die platonischen Körper in ihren Werken: Piero della Francesca, Leonardo da Vinci (Illustrationen zu Divina Proportione von Luca Pacioli), Albrecht Dürer, Wenzel Jamnitzer (Perspectiva Corporum Regularium, 1568).
Johannes Kepler gelang es (Mysterium Cosmographicum, 1596), die Bahnradien der sechs damals bekannten Planeten durch eine bestimmte Abfolge der fünf Körper und ihrer Innen- und Außenkugeln darzustellen. Diese Interpretation stimmte weitgehend mit den damals bekannten astronomischen Werten überein, entsprach aber tatsächlich keiner Gesetzmäßigkeit.
Erde
Wasser
Luft
Feuer
Äther / Kosmos
Zuordnung der platonischen Körper zu den Elementen in Keplers Harmonice mundi
Anwendungen
Die auffällige Regelmäßigkeit macht die platonischen Körper auf vielerlei Art für den Menschen interessant.
Zusätzlich zum klassischen, geometrischen Würfel, der leicht herzustellen ist und schon seit Jahrtausenden für Glücksspiele verwendet wurde, finden heute auch die anderen platonischen Körper (die ebenfalls als Würfel bezeichnet werden) Anwendung im Spiel, z. B. in Pen-&-Paper-Rollenspielen (siehe Spielwürfel). Die Voraussetzungen dazu sind eine physikalisch gleichmäßige Dichteverteilung – also homogenes Material – sowie die gleichartige Beschaffenheit aller Ecken und Kanten.
Platonische Körper sind seit langem Objekte bildender Künstler. In der modernen Kunst hat sich vor allem M. C. Escher mit ihnen und ihnen ähnlichen regelmäßigen Körpern beschäftigt; auch Werke von Salvador Dalí thematisieren platonische Körper oder ihre Entfaltung.
Platonische Polyeder spielen auch eine wichtige Rolle im Adventure-Spiel The Dig.
Rudolf von Laban konkretisierte seine raum-rhythmische Bewegungslehre (Choreutik) vorwiegend im Modell des Ikosaeders.
Im Management von Teams könne man, laut einem Vorschlag von Stafford Beer, die platonischen Körper als Vorbild für Vernetzung bei Konzentration der Mitarbeiter auf ihre Themen verwenden. Jeder Mitarbeiter entspricht einer Kante, jedes Thema einer Ecke eines platonischen Körpers. Zu jedem Thema trifft man sich regelmäßig mit genau den Mitarbeitern, deren Kanten in dieser Themen-Ecke zusammenlaufen. So bearbeitet ein Mitarbeiter maximal zwei Themen gleichzeitig und kann sich gut konzentrieren. Auch bei großen Teams (z. B. Ikosaeder = 30 Mitarbeiter, 5 Mitarbeiter pro Thema, 12 Themen) sei somit gewährleistet, dass Ordnung herrscht. Beers Idee wurde am Managementzentrum Sankt Gallen aufgegriffen und eine darauf beruhende Methode namens Syntegrity vorgeschlagen.[33]
Auch in der Natur können sich vorhandene Regelmäßigkeiten als platonische Körper ausprägen.
Tetraeder, Würfel und Oktaeder kommen in der Natur als (idealisierte) Kristalle vor; dodekaedrische und ikosaedrische Symmetrieelemente finden sich bei Quasikristallen.
Exakte Dodekaeder kommen nicht als Kristalle vor. Kristalle bestimmter Mineralien, wie z. B. Pyrit, die äußerlich wie ein Dodekaeder aussehen, sind keine exakten Pentagondodekaeder, sondern verzerrt. Allerdings ist die Verzerrung mit dem bloßen Auge aus der Entfernung oft nicht wahrzunehmen. Aus der Nähe betrachtet erkennt man jedoch, dass diese Körper nicht aus regelmäßigen (sondern unregelmäßigen) Fünfecken geformt sind. Zum Beispiel bilden Natriumchlorid und Alaun, das beim Ausfällen mit gewissen anderen Stoffen dotiert ist, Würfelkristalle. Reines Alaun kristallisiert als Oktaeder. Dabei ist die Abgrenzung zwischen den einzelnen Formen nicht absolut, sondern die interne Symmetrie kann sich in unterschiedlichen Ausprägungen äußern. In der Mineralogie fallen alle die platonischen Körper Tetraeder, Würfel und Oktaeder sowie Rhombendodekaeder, Kuboktaeder und ihre Mischformen unter den Begriff kubisch. Nicht wenige Mineralien können dementsprechend mehrere dieser kubischen Formen annehmen. Dazu gehört zum Beispiel Pyrit, das sowohl als Würfel als auch als Oktaeder oder, wie oben beschrieben, als verzerrtes Dodekaeder vorkommt.
Platonische Körper, im Speziellen das Ikosaeder, sind sehr häufig Strukturformen, wie sie bei Clustern (also kleinen Nanoteilchen) beobachtet werden.
Einige der platonischen Körper werden von organischen Kohlenwasserstoffmolekülen gebildet (siehe platonische Kohlenwasserstoffe).
Das Dodekaeder ist die kleinste mögliche Form der als Fullerene bezeichneten hohlen Kohlenstoffmoleküle.
Das Proteinkapsid von Viren kann unterschiedliche Formen haben, zum Beispiel ikosaederförmig.
Die Kalkskelette der Radiolarien haben sehr verschiedene Formen, darunter auch platonische Körper.
Literatur
Paul Adam, Arnold Wyss: Platonische und Archimedische Körper, ihre Sternformen und polaren Gebilde. Verlag Freies Geistesleben, Stuttgart 1984, ISBN 3-7725-0965-7.
Renatus Ziegler: Platonische Körper. Verwandtschaften, Metamorphosen, Umstülpungen. Verlag am Goetheanum, Dornach/Schweiz 2012, ISBN 978-3-7235-1326-2.
↑Thomas Digges: Nova corpora regularia: Quinque corporum regularium simplicium … (Based in part on the “Pantometria” of Leonard Digges which was completed and published by Thomas Digges). 1634 (eingeschränkte Vorschau in der Google-Buchsuche)
↑Christophorus Leibfried: Tabula III. Orbium Planetarum Dimensiones et Distantias Per Quinque Regularia Corpora Geometrica Exhibens
↑Wegen (Schläfli-Symbol) wurde zwecks Angleichung eingesetzt.
↑Eric Weisstein: Dodecahedron. Umkugelradius, Formel (17) weiter vereinfacht. In: MathWorld Wolfram. A Wolfram Web Resource, abgerufen am 1. Juli 2020.
↑Eric Weisstein: Dodecahedron. Kantenkugelradius, Formel (19). In: MathWorld Wolfram. A Wolfram Web Resource, abgerufen am 1. Juli 2020.
↑Eric Weisstein: Dodecahedron. Inkugelradius, Formel (15). In: MathWorld Wolfram. A Wolfram Web Resource, abgerufen am 1. Juli 2020.
↑Mike Zabrocki: HOMEWORK #3 SOLUTIONS – MATH 3260. (PDF) York University, Mathematics and Statistics, Toronto, 2003, S. 4, abgerufen am 31. Mai 2020.
↑Oliver Knill, Math circle Northeastern, Harvard Mathematics Department Home page: Polyhedra and Polytopes
↑Vgl. auch Helmut Gebelein: Das Element Feuer in Haushalt und Familie. In: Trude Ehlert (Hrsg.): Haushalt und Familie in Mittelalter und früher Neuzeit. Sigmaringen 1991, ISBN 978-3-7995-4156-5, S. 137–151, hier: S. 139.
↑Martin Pfiffner: Team Syntegrity – Der kybernetische Weg zur Willensbildung in Organisationen. Malik on Management, 5/2001, S. 82–95. Online unter Archivierte Kopie (Memento vom 31. Januar 2012 im Internet Archive)
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) The topic of this article may not meet Wikipedia's notability guideline for biographies. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to b...
Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (juillet 2023). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références ». En pratique : Quelles sources sont attendues ? C...
Universitas Teknologi Sulawesi UtaraUTSULambang Universitas Teknologi Sulawesi UtaraNama sebelumnyaSTEKON Harapan KasihJenisPerguruan Tinggi SwastaDidirikan1 Agustus 2007Lembaga indukYayasan Harapan KasihRektorRuano Urbanus Senduk, SE, MMLokasiKota Manado, Sulawesi Utara, IndonesiaWarna BiruSitus webhttps://utsu.ac.id Universitas Teknologi Sulawesi Utara (UTSU) adalah salah satu perguruan tinggi swasta di Manado - Sulawesi Utara sebelumnya bernama STIE Harapan Kasih yang lebih dikenal d...
Alcoholic chicken dish This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Drunken chicken – news · newspapers · books · scholar · JSTOR (February 2013) (Learn how and when to remove this message) Drunken chickenversion of Shaoxing drunken chickenTraditional Chinese醉雞Simplified Chinese醉鸡Literal mean...
Schweiger nel 2022 Til Schweiger, all'anagrafe Tilman Valentin Schweiger (IPA: [ˈtɪlman ˈvaləntiːn ˈʃvaɪɡɐ]; Friburgo in Brisgovia, 19 dicembre 1963), è un attore, regista e produttore cinematografico tedesco. Indice 1 Biografia 2 Vita privata 3 Filmografia parziale 3.1 Attore 3.1.1 Cinema 3.1.2 Televisione 3.2 Regista 3.3 Sceneggiatore 3.4 Produttore 4 Doppiatori italiani 5 Altri progetti 6 Collegamenti esterni Biografia È noto soprattutto per aver interpretato Cynric nel film Ki...
هنودمعلومات عامةنسبة التسمية الهند التعداد الكليالتعداد قرابة 1.21 مليار[1][2]تعداد الهند عام 2011ق. 1.32 مليار[3]تقديرات عام 2017ق. 30.8 مليون[4]مناطق الوجود المميزةبلد الأصل الهند البلد الهند الهند نيبال 4,000,000[5] الولايات المتحدة 3,982,398[6] الإمار...
1958 film The Notorious Mr. MonksDirected byJoseph KaneWritten byPaul FixRichard C. SarafianProduced byRudy RalstonStarringVera RalstonDon KellyPaul FixCinematographyJack A. MartaEdited byFrederic KnudtsonMusic byJerry RobertsProductioncompanyVentura Pictures CorporationDistributed byRepublic PicturesRelease date February 28, 1958 (1958-02-28) Running time70 minutesCountryUnited StatesLanguageEnglish The Notorious Mr. Monks is a 1958 American drama film directed by Joseph Kane ...
Ini adalah nama Batak Simalungun, marganya adalah Saragih. Marsiaman Saragih Anggota Dewan Perwakilan Rakyat Republik IndonesiaPetahanaMulai menjabat 1 Oktober 2014PresidenSusilo Bambang Yudhoyono Joko WidodoDaerah pemilihanRiau II Informasi pribadiLahirMarsiaman Saragih12 Maret 1952 (umur 72)Pematang Siantar, Simalungun, Sumatera UtaraPartai politikPDI-PAnak3Alma materUniversitas IndonesiaSunting kotak info • L • B Marsiaman Saragih, S.H. (lahir 12 Maret 1952) adalah s...
American politician Burton C. CookMember of the U.S. House of Representativesfrom Illinois's 6th districtIn officeMarch 4, 1865 – August 26, 1871Preceded byJesse O. NortonSucceeded byHenry SnappMember of the Illinois SenateIn office1852-1860 Personal detailsBorn(1819-05-11)May 11, 1819Pittsford, New YorkDiedAugust 18, 1894(1894-08-18) (aged 75)Evanston, IllinoisPolitical partyRepublicanSignature Burton Chauncey Cook (May 11, 1819 – August 18, 1894) was a U.S. Rep...
United States historic placeCaswell County CourthouseU.S. National Register of Historic Places Caswell County Courthouse, March 2009Show map of North CarolinaShow map of the United StatesLocationCourthouse Sq., Yanceyville, North CarolinaCoordinates36°24′11″N 79°20′11″W / 36.40306°N 79.33639°W / 36.40306; -79.33639Arealess than one acreBuilt1858 (1858)-1861ArchitectCosby, John WilliamNRHP reference No.73001309[1]Added to NRHPJune 4, 1...
Auto plant in Cowley, England Plant Oxford on the Oxford Ring Road (A4142) Plant Oxford located in Cowley, southeast Oxford, England, is a BMW car assembly facility where Mini cars are built. The plant forms the Mini production triangle along with Plant Hams Hall where engines are manufactured and Plant Swindon where body pressings and sub-assemblies are built. The original Morris Motors site at Cowley had three manufacturing plants, separated by the eastern Oxford Ring Road and B480 road. Th...
US gay rights organization National LGBTQ Task ForceFormation1973; 51 years ago (1973) (as National Gay Task Force) founded by Robert L. Livingston, Tom Ellis, and Howard BrownHeadquartersWashington, D.C., U.S.Region United StatesExecutive directorKierra JohnsonDeputy Director, Strategic AdvancementSayre E. ReeceDeputy Director, People and CultureAlicia BoykinsWebsitethetaskforce.orgFormerly calledNational Gay Task Force; National Gay and Lesbian Task Force The National LGBT...
Portada de la edición alemana original de La ética protestante y el espíritu del capitalismo de Max Weber La ética protestante del trabajo, también llamada ética calvinista del trabajo o ética puritana del trabajo,[1] es un concepto teológico, sociológico, económico e histórico referente a la ética del trabajo que hace hincapié y defiende que el trabajo duro, la disciplina y la frugalidad son el resultado de la adscripción de una persona a los valores del cristianismo pro...
Otto Seeck Otto Karl Seeck (2 Februari 1850 – 29 Juni 1921) adalah seorang sejarawan klasik Jerman yang dikenal karena karyanya tentang kemunduran dunia kuno. Ia lahir di Riga. Ia mula-mula belajar kimia di Universitas Dorpat namun kemudian berpindah ke Universitas Berlin untuk belajar sejarah klasik di bawah bimbingan Theodor Mommsen. Seeck meraih gelar dokterandes dari Universitas Berlin pada 1872 setelah menulis tesisnya tentang Notitia Dignitatum,[1] sebuah dokumen...
Not to be confused with Thomas Kuhn (Michigan politician).American philosopher of science (1922–1996) Thomas KuhnKuhn in 1973BornThomas Samuel Kuhn(1922-07-18)July 18, 1922Cincinnati, Ohio, USDiedJune 17, 1996(1996-06-17) (aged 73)Cambridge, Massachusetts, USEducationHarvard University (BSc, MSc, PhD)Era20th-century philosophyRegionWestern philosophy American philosophy SchoolAnalyticHistorical turn[1]Historiographical externalism[2]InstitutionsHarvard UniversityUnivers...
Brazilian professor, jurist and justice His ExcellencyLuís Roberto BarrosoBarroso in 2014Justice of the Supreme Federal CourtIncumbentAssumed office 26 June 2013Appointed byDilma RousseffPreceded byAyres BrittoPresident of the Supreme Federal CourtIncumbentAssumed office 28 September 2023Vice PresidentLuiz Edson FachinPreceded byRosa Weber Personal detailsBorn (1958-03-11) 11 March 1958 (age 66)Vassouras, Rio de Janeiro, BrazilSpouse Tereza Cristina van Brussel ̴...
Cette page contient des caractères spéciaux ou non latins. S’ils s’affichent mal (▯, ?, etc.), consultez la page d’aide Unicode. Pour les articles homonymes, voir Roupie. Roupie indienneUnité monétaire actuelle Pays officiellementutilisateurs Inde Autres paysutilisateurs Bhoutan Népal Banque centrale Banque de réserve de l'Inde Appellation locale रुपया, rupee Symbole local ₹ Code ISO 4217 INR Sous-unité 100 paisa Taux de change 1 € = 85,30 ₹...