Power set

Power set
The elements of the power set of {x, y, z} ordered with respect to inclusion.
TypeSet operation
FieldSet theory
StatementThe power set is the set that contains all subsets of a given set.
Symbolic statement

In mathematics, the power set (or powerset) of a set S is the set of all subsets of S, including the empty set and S itself.[1] In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is postulated by the axiom of power set.[2] The powerset of S is variously denoted as P(S), 𝒫(S), P(S), , or 2S.[a] Any subset of P(S) is called a family of sets over S.

Example

If S is the set {x, y, z}, then all the subsets of S are

  • {} (also denoted or , the empty set or the null set)
  • {x}
  • {y}
  • {z}
  • {x, y}
  • {x, z}
  • {y, z}
  • {x, y, z}

and hence the power set of S is {{}, {x}, {y}, {z}, {x, y}, {x, z}, {y, z}, {x, y, z}}.[3]

Properties

If S is a finite set with the cardinality |S| = n (i.e., the number of all elements in the set S is n), then the number of all the subsets of S is |P(S)| = 2n. This fact as well as the reason of the notation 2S denoting the power set P(S) are demonstrated in the below.

An indicator function or a characteristic function of a subset A of a set S with the cardinality |S| = n is a function from S to the two-element set {0, 1}, denoted as IA : S → {0, 1}, and it indicates whether an element of S belongs to A or not; If x in S belongs to A, then IA(x) = 1, and 0 otherwise. Each subset A of S is identified by or equivalent to the indicator function IA, and {0,1}S as the set of all the functions from S to {0, 1} consists of all the indicator functions of all the subsets of S. In other words, {0, 1}S is equivalent or bijective to the power set P(S). Since each element in S corresponds to either 0 or 1 under any function in {0, 1}S, the number of all the functions in {0, 1}S is 2n. Since the number 2 can be defined as {0, 1} (see, for example, von Neumann ordinals), the P(S) is also denoted as 2S. Obviously |2S| = 2|S| holds. Generally speaking, XY is the set of all functions from Y to X and |XY| = |X||Y|.

Cantor's diagonal argument shows that the power set of a set (whether infinite or not) always has strictly higher cardinality than the set itself (or informally, the power set must be larger than the original set). In particular, Cantor's theorem shows that the power set of a countably infinite set is uncountably infinite. The power set of the set of natural numbers can be put in a one-to-one correspondence with the set of real numbers (see Cardinality of the continuum).

The power set of a set S, together with the operations of union, intersection and complement, is a Σ-algebra over S and can be viewed as the prototypical example of a Boolean algebra. In fact, one can show that any finite Boolean algebra is isomorphic to the Boolean algebra of the power set of a finite set. For infinite Boolean algebras, this is no longer true, but every infinite Boolean algebra can be represented as a subalgebra of a power set Boolean algebra (see Stone's representation theorem).

The power set of a set S forms an abelian group when it is considered with the operation of symmetric difference (with the empty set as the identity element and each set being its own inverse), and a commutative monoid when considered with the operation of intersection (with the entire set S as the identity element). It can hence be shown, by proving the distributive laws, that the power set considered together with both of these operations forms a Boolean ring.

Representing subsets as functions

In set theory, XY is the notation representing the set of all functions from Y to X. As "2" can be defined as {0, 1} (see, for example, von Neumann ordinals), 2S (i.e., {0, 1}S) is the set of all functions from S to {0, 1}. As shown above, 2S and the power set of S, P(S), are considered identical set-theoretically.

This equivalence can be applied to the example above, in which S = {x, y, z}, to get the isomorphism with the binary representations of numbers from 0 to 2n − 1, with n being the number of elements in the set S or |S| = n. First, the enumerated set { (x, 1), (y, 2), (z, 3) } is defined in which the number in each ordered pair represents the position of the paired element of S in a sequence of binary digits such as {x, y} = 011(2); x of S is located at the first from the right of this sequence and y is at the second from the right, and 1 in the sequence means the element of S corresponding to the position of it in the sequence exists in the subset of S for the sequence while 0 means it does not.

For the whole power set of S, we get:

Subset Sequence
of binary digits
Binary
interpretation
Decimal
equivalent
{ } 0, 0, 0 000(2) 0(10)
{ x } 0, 0, 1 001(2) 1(10)
{ y } 0, 1, 0 010(2) 2(10)
{ x, y } 0, 1, 1 011(2) 3(10)
{ z } 1, 0, 0 100(2) 4(10)
{ x, z } 1, 0, 1 101(2) 5(10)
{ y, z } 1, 1, 0 110(2) 6(10)
{ x, y, z } 1, 1, 1 111(2) 7(10)

Such an injective mapping from P(S) to integers is arbitrary, so this representation of all the subsets of S is not unique, but the sort order of the enumerated set does not change its cardinality. (E.g., { (y, 1), (z, 2), (x, 3) } can be used to construct another injective mapping from P(S) to the integers without changing the number of one-to-one correspondences.)

However, such finite binary representation is only possible if S can be enumerated. (In this example, x, y, and z are enumerated with 1, 2, and 3 respectively as the position of binary digit sequences.) The enumeration is possible even if S has an infinite cardinality (i.e., the number of elements in S is infinite), such as the set of integers or rationals, but not possible for example if S is the set of real numbers, in which case we cannot enumerate all irrational numbers.

Relation to binomial theorem

The binomial theorem is closely related to the power set. A k–elements combination from some set is another name for a k–elements subset, so the number of combinations, denoted as C(n, k) (also called binomial coefficient) is a number of subsets with k elements in a set with n elements; in other words it's the number of sets with k elements which are elements of the power set of a set with n elements.

For example, the power set of a set with three elements, has:

  • C(3, 0) = 1 subset with 0 elements (the empty subset),
  • C(3, 1) = 3 subsets with 1 element (the singleton subsets),
  • C(3, 2) = 3 subsets with 2 elements (the complements of the singleton subsets),
  • C(3, 3) = 1 subset with 3 elements (the original set itself).

Using this relationship, we can compute |2S| using the formula:

Therefore, one can deduce the following identity, assuming |S| = n:

Recursive definition

If S is a finite set, then a recursive definition of P(S) proceeds as follows:

  • If S = {}, then P(S) = { {} }.
  • Otherwise, let eS and T = S ∖ {e}; then P(S) = P(T) ∪ {t ∪ {e} : tP(T)}.

In words:

  • The power set of the empty set is a singleton whose only element is the empty set.
  • For a non-empty set S, let be any element of the set and T its relative complement; then the power set of S is a union of a power set of T and a power set of T whose each element is expanded with the e element.

Subsets of limited cardinality

The set of subsets of S of cardinality less than or equal to κ is sometimes denoted by Pκ(S) or [S]κ, and the set of subsets with cardinality strictly less than κ is sometimes denoted P<κ(S) or [S]<κ. Similarly, the set of non-empty subsets of S might be denoted by P≥1(S) or P+(S).

Power object

A set can be regarded as an algebra having no nontrivial operations or defining equations. From this perspective, the idea of the power set of X as the set of subsets of X generalizes naturally to the subalgebras of an algebraic structure or algebra.

The power set of a set, when ordered by inclusion, is always a complete atomic Boolean algebra, and every complete atomic Boolean algebra arises as the lattice of all subsets of some set. The generalization to arbitrary algebras is that the set of subalgebras of an algebra, again ordered by inclusion, is always an algebraic lattice, and every algebraic lattice arises as the lattice of subalgebras of some algebra. So in that regard, subalgebras behave analogously to subsets.

However, there are two important properties of subsets that do not carry over to subalgebras in general. First, although the subsets of a set form a set (as well as a lattice), in some classes it may not be possible to organize the subalgebras of an algebra as itself an algebra in that class, although they can always be organized as a lattice. Secondly, whereas the subsets of a set are in bijection with the functions from that set to the set {0, 1} = 2, there is no guarantee that a class of algebras contains an algebra that can play the role of 2 in this way.

Certain classes of algebras enjoy both of these properties. The first property is more common; the case of having both is relatively rare. One class that does have both is that of multigraphs. Given two multigraphs G and H, a homomorphism h : GH consists of two functions, one mapping vertices to vertices and the other mapping edges to edges. The set HG of homomorphisms from G to H can then be organized as the graph whose vertices and edges are respectively the vertex and edge functions appearing in that set. Furthermore, the subgraphs of a multigraph G are in bijection with the graph homomorphisms from G to the multigraph Ω definable as the complete directed graph on two vertices (hence four edges, namely two self-loops and two more edges forming a cycle) augmented with a fifth edge, namely a second self-loop at one of the vertices. We can therefore organize the subgraphs of G as the multigraph ΩG, called the power object of G.

What is special about a multigraph as an algebra is that its operations are unary. A multigraph has two sorts of elements forming a set V of vertices and E of edges, and has two unary operations s, t : EV giving the source (start) and target (end) vertices of each edge. An algebra all of whose operations are unary is called a presheaf. Every class of presheaves contains a presheaf Ω that plays the role for subalgebras that 2 plays for subsets. Such a class is a special case of the more general notion of elementary topos as a category that is closed (and moreover cartesian closed) and has an object Ω, called a subobject classifier. Although the term "power object" is sometimes used synonymously with exponential object YX, in topos theory Y is required to be Ω.

Functors and quantifiers

There is both a covariant and contravariant power set functor, P: Set → Set and P: Set op → Set. The covariant functor is defined more simply. as the functor which sends a set S to P(S) and a morphism f: ST (here, a function between sets) to the image morphism. That is, for . Elsewhere in this article, the power set was defined as the set of functions of S into the set with 2 elements. Formally, this defines a natural isomorphism . The contravariant power set functor is different from the covariant version in that it sends f to the preimage morphism, so that if . This is because a general functor takes a morphism to precomposition by h, so a function , which takes morphisms from b to c and takes them to morphisms from a to c, through b via h. [4]

In category theory and the theory of elementary topoi, the universal quantifier can be understood as the right adjoint of a functor between power sets, the inverse image functor of a function between sets; likewise, the existential quantifier is the left adjoint.[5]

See also

Notes

  1. ^ The notation 2S, meaning the set of all functions from S to a given set of two elements (e.g., {0, 1}), is used because the powerset of S can be identified with, is equivalent to, or bijective to the set of all the functions from S to the given two-element set.[1]

References

  1. ^ a b Weisstein
  2. ^ Devlin 1979, p. 50
  3. ^ Puntambekar 2007, pp. 1–2
  4. ^ Riehl, Emily. Category Theory in Context. ISBN 978-0486809038.
  5. ^ Mac Lane & Moerdijk 1992, p. 58

Bibliography

Read other articles:

Klaus KinskiKinski at the 1988 Cannes Film FestivalLahirKlaus Günter Karl Nakszynski[1](1926-10-18)18 Oktober 1926Zoppot, Kota Merdeka Danzig (sekarang Sopot, Polandia)Meninggal23 November 1991(1991-11-23) (umur 65)Lagunitas, California, ASKebangsaanJermanPekerjaanAktorTahun aktif1948–1989Suami/istriGislinde Kühbeck ​ ​(m. 1952; c. 1955)​Brigitte Ruth Tocki ​ ​(m. 1960; c. 1971)...

 

Val de Loire Le Val de Loire au niveau du méandre de Bou. Pays France Région française Centre-Val de LoirePays de la Loire Département français Loiret, Loir-et-Cher, Indre-et-Loire, Maine-et-Loire Villes principales Orléans, Blois, Tours et Angers Coordonnées 47° 12′ 59″ nord, 0° 03′ 44″ est Production vin, électricité, maraîchage Le Val de Loire. modifier  Le Val de Loire est une région naturelle française correspondant à la partie d...

 

Pour les articles homonymes, voir Déflecteur. La Williams FW28 pilotée par Alexander Wurz teste deux nouveaux déflecteurs (juste derrière les roues avant) à Silverstone en 2006. En Formule 1, un déflecteur est un appendice aérodynamique, élément de la « carrosserie », fabriqué en carbone, et permettant d'orienter un flux d'air vers une direction souhaitée ou de l'en écarter. L'objectif du déflecteur, une pièce testée en soufflerie, est de réguler le comportement a...

Market name for Hawaiian coffee brand Kona coffee is the market name for coffee (Coffea arabica) cultivated on the slopes of Hualalai and Mauna Loa in the North and South Kona Districts of the Big Island of Hawaii. It is one of the most expensive coffees in the world. Only coffee from the Kona Districts can be described as Kona. The weather of sunny mornings, clouds or rain in the afternoon, little wind, and mild nights combined with porous, mineral-rich volcanic soil create favorable coffee-...

 

William Pottker Inter X ABC untuk Kejuaraan Brasil Serie B 2017Informasi pribadiTanggal lahir 22 Desember 1993 (umur 30)Tempat lahir BrasilPosisi bermain PenyerangKarier senior*Tahun Tim Tampil (Gol)2013 Ventforet Kofu * Penampilan dan gol di klub senior hanya dihitung dari liga domestik William Pottker (lahir 22 Desember 1993) adalah pemain sepak bola asal Brasil. Karier William Pottker pernah bermain untuk Ventforet Kofu. Pranala luar (Jepang) Profil dan statistik di situs web resmi J...

 

La Marca del Brandeburgo si formò l'11 giugno 1157, quando Alberto l'Orso si impossessò dei territori che gli erano stati assegnati nel 1134 sconfiggendo il principe slavo Jaxa von Köpenick. Indice 1 Margravi di Brandeburgo 1.1 Ascanidi 1.2 Wittelsbach 2 Elettori e Margravi di Brandeburgo 2.1 Wittelsbach 2.2 Lussemburgo 2.3 Hohenzollern 3 Altri progetti Margravi di Brandeburgo Ascanidi Ritratto Nome(nascita–morte) Regno Matrimoni Note Inizio Fine Alberto Il'Orso(1100ca–1170) 11 giugno...

Shabwah شبوةKegubernuranNegaraYamanIbu kotaAtaqLuas • Total47.728 km2 (18,428 sq mi)Populasi (2011)[1] • Total568.000 • Kepadatan0,012/km2 (0,031/sq mi) Shabwah (Arab: شبوةcode: ar is deprecated Šabwa) adalah sebuah kegubernuran di Yaman, yang beribu kota di Ataq. Distrik Distrik Ain Distrik At-Talh Distrik Ar-Rawdah Distrik Arma Distrik As-Said Distrik Ataq Distrik Bayhan Distrik Dhar Distrik Habban Distrik Hatib D...

 

信徒Believe类型奇幻、科幻开创阿方索·卡隆主演 Johnny Sequoyah Jake McLaughlin Delroy Lindo 凯尔·麦克拉克伦 西耶娜·盖尔利 鄭智麟 Tracy Howe Arian Moayed 国家/地区美国语言英语季数1集数12每集长度43分钟制作执行制作 阿方索·卡隆 J·J·艾布拉姆斯 Mark Friedman 布赖恩·伯克 机位多镜头制作公司坏机器人制片公司华纳兄弟电视公司播出信息 首播频道全国广播公司播出日期2014年3月10日...

 

Place in Lower Carniola, SloveniaDolenje SkopiceDolenje SkopiceLocation in SloveniaCoordinates: 45°54′10.46″N 15°33′15.53″E / 45.9029056°N 15.5543139°E / 45.9029056; 15.5543139Country SloveniaTraditional regionLower CarniolaStatistical regionLower SavaMunicipalityBrežiceArea • Total2.05 km2 (0.79 sq mi)Elevation150.4 m (493.4 ft)Population (2020) • Total196 • Density96/km2 (250/sq mi)&#...

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...

 

American college football season 1987 Tennessee Volunteers footballPeach Bowl championPeach Bowl, W 27–22 vs. IndianaConferenceSoutheastern ConferenceRankingCoachesNo. 13APNo. 14Record10–2–1 (4–1–1 SEC)Head coachJohnny Majors (11th season)Offensive coordinatorWalt Harris (5th season)Defensive coordinatorKen Donahue (3rd season)Captains Harry Galbreath Kelly Ziegler Home stadiumNeyland StadiumSeasons← 19861988 → 1987 Southeastern Co...

 

Jake BuseyBusey at the 2018 San Diego Comic-ConLahirWilliam Jacob Busey Jr.15 Juni 1971 (umur 52)Los Angeles, California, ASPekerjaanAktormusisiproduser filmTahun aktif1978–sekarangPasanganApril HutchinsonAnak1Orang tuaGary Busey (father) William Jacob The Tooth Busey Jr. (lahir 15 Juni 1971) adalah seorang aktor, musisi, dan produser film Amerika Serikat. Di antara perannya yang paling menonjol adalah pembunuh berantai Johnny Bartlett di The Frighteners tahun 1996, Ace di Starsh...

American attorney & politician (born 1968) Kelly AyotteOfficial portrait, 2011United States Senatorfrom New HampshireIn officeJanuary 3, 2011 – January 3, 2017Preceded byJudd GreggSucceeded byMaggie Hassan27th Attorney General of New HampshireIn officeJuly 15, 2004 – July 17, 2009Governor Craig Benson John Lynch Preceded byPeter HeedSucceeded byMichael Delaney Personal detailsBornKelly Ann Ayotte (1968-06-27) June 27, 1968 (age 55)Nashua, New Hampshire, U.S.Poli...

 

2016 - 2017 conflict in the Republic of the Congo Not to be confused with 2002–2003 conflict in the Pool Department.Pool WarLocation of Pool department in the Republic of the CongoDate4 April 2016 – 23 December 2017(1 year, 8 months, 2 weeks and 5 days)LocationPool Department, Republic of the CongoStatus CeasefireBelligerents  Republic of the Congo Ninja militiaCommanders and leaders Denis Sassou Nguesso Frédéric BintsamouUnits involved Armed Forces of the Repub...

 

KRI Teluk Hading (538) Sejarah Jerman Timur Nama CottbusAsal nama CottbusPembangun VEB Peenewerft, WolgastBiaya US$51 Juta (Rp791,34 Miliar)Nomor galangan 338Pasang lunas 22 November 1976Diluncurkan 10 Juni 1977Mulai berlayar 26 Mei 1978Dipensiunkan 2 Oktober 1990Identifikasi Nomor lambung: 634, 614Nasib dijual ke Indonesia 1993 Indonesia Nama Teluk HadingAsal nama Teluk Hading, Kabupaten Flores TimurDiperoleh 25 Agustus 1993Mulai berlayar 12 Juli 1994Identifikasi Nomor lambung: 538Motto Bra...

American poet (1830–1886) Emily DickinsonDaguerreotype taken at Mount Holyoke, December 1846 or early 1847; the only authenticated portrait of Dickinson after early childhood[1]Born(1830-12-10)December 10, 1830Amherst, Massachusetts, U.S.DiedMay 15, 1886(1886-05-15) (aged 55)Amherst, Massachusetts, U.S.Resting placeAmherst West CemeteryOccupationPoetAlma materMount Holyoke Female SeminaryNotable worksList of poemsParentsEdward DickinsonEmily Norcross DickinsonRelatives Wil...

 

Pour les articles homonymes, voir Nebraska (homonymie). Nebraska Sceau du Nebraska. Drapeau du Nebraska. Carte des États-Unis avec le Nebraska en rouge.SurnomCornhusker StateEn français : « l'État des décortiqueurs de maïs ».DeviseEquality before the law« L'Égalité devant la loi ». Administration Pays États-Unis Capitale Lincoln Adhésion à l’Union 1er mars 1867 (157 ans) (37e État) Gouverneur Jim Pillen (R) Sénateurs Deb Fischer (R)Pete Ri...

 

Ketika Kesultanan Zanzibar telah mencapai daerah kekuasaannya yang paling luas pada tahun 1856, yaitu menjangkau daerah-daerah yang dihuni masyarakat Swahili hingga sejumlah kota dan pelabuhan di bagian pesisir sebelah timur benua Afrika (ditandai dengan warna merah). Sejarah kebudayaan Swahili sudah berlangsung lama di kawasan Afrika Timur, tepatnya berada pada pesisir Swahili. Daerah-daerah yang berbatasan langsung dengan laut di antaranya adalah Tanzania, Kenya, Uganda, Mozambik, dan juga ...

جزء من سلسلة مقالات حولالمجموعة الشمسية المكونات الشمس كوكب أقمار الكواكب الصغيرة كويكبات سحابة أورط سحابة هيلز مذنبات الكواكب عطارد الزهرة المريخ الأرض المشتري زحل نيبتون أورانوس القوائم المسافة من الشمس السطح الإهليلجي حسب الحجم الأقمار الطبيعية  بوابة المجموعة ...

 

River in south-central Africa Not to be confused with Cuango River. Cuando RiverChobe River at KasaneThe Cuando basinLocationCountriesAngolaNamibiaZambiaBotswanaPhysical characteristicsSourceMount Tembo[1] • locationLutuai, Moxico Province, Angola • coordinates13°00′08″S 19°07′16″E / 13.00222°S 19.12111°E / -13.00222; 19.12111 • elevation1,359 m (4,459 ft) MouthZambezi River •...