Let be an entire binary relation on . The strategy is to define a tree on of finite sequences whose neighboring elements satisfy Then a branch through is an infinite sequence whose neighboring elements satisfy Start by defining if for Since is entire, is a pruned tree with levels. Thus, has a branch So, for all which implies Therefore, is true.
Let be a pruned tree on with levels. The strategy is to define a binary relation on so that produces a sequence where and is a strictly increasing function. Then the infinite sequence is a branch. (This proof only needs to prove this for ) Start by defining if is an initial subsequence of and Since is a pruned tree with levels, is entire. Therefore, implies that there is an infinite sequence such that Now for some Let be the last element of Then For all the sequence belongs to because it is an initial subsequence of or it is a Therefore, is a branch.
|