Concept in model theory
In model theory, a first-order theory is called model complete if every embedding of its models is an elementary embedding.
Equivalently, every first-order formula is equivalent to a universal formula.
This notion was introduced by Abraham Robinson.
Model companion and model completion
A companion of a theory T is a theory T* such that every model of T can be embedded in a model of T* and vice versa.
A model companion of a theory T is a companion of T that is model complete. Robinson proved that a theory has at most one model companion. Not every theory is model-companionable, e.g. theory of groups. However if T is an -categorical theory, then it always has a model companion.
A model completion for a theory T is a model companion T* such that for any model M of T, the theory of T* together with the diagram of M is complete. Roughly speaking, this means every model of T is embeddable in a model of T* in a unique way.
If T* is a model companion of T then the following conditions are equivalent:
If T also has universal axiomatization, both of the above are also equivalent to:
Examples
Non-examples
- The theory of dense linear orders with a first and last element is complete but not model complete.
- The theory of groups (in a language with symbols for the identity, product, and inverses) has the amalgamation property but does not have a model companion.
Sufficient condition for completeness of model-complete theories
If T is a model complete theory and there is a model of T that embeds into any model of T, then T is complete.
Notes
References