Subobject classifier

In category theory, a subobject classifier is a special object Ω of a category such that, intuitively, the subobjects of any object X in the category correspond to the morphisms from X to Ω. In typical examples, that morphism assigns "true" to the elements of the subobject and "false" to the other elements of X. Therefore, a subobject classifier is also known as a "truth value object" and the concept is widely used in the categorical description of logic. Note however that subobject classifiers are often much more complicated than the simple binary logic truth values {true, false}.

Introductory example

As an example, the set Ω = {0,1} is a subobject classifier in the category of sets and functions: to every subset A of S defined by the inclusion function  j  : AS we can assign the function χA from S to Ω that maps precisely the elements of A to 1 (see characteristic function). Every function from S to Ω arises in this fashion from precisely one subset A.

To be clearer, consider a subset A of S (AS), where S is a set. The notion of being a subset can be expressed mathematically using the so-called characteristic function χA : S → {0,1}, which is defined as follows:

(Here we interpret 1 as true and 0 as false.) The role of the characteristic function is to determine which elements belong to the subset A. In fact, χA is true precisely on the elements of A.

In this way, the collection of all subsets of S and the collection of all maps from S to Ω = {0,1} are isomorphic.

To categorize this notion, recall that, in category theory, a subobject is actually a pair consisting of an object and a monic arrow (interpreted as the inclusion into another object). Accordingly, true refers to the element 1, which is selected by the arrow: true: {0} → {0, 1} that maps 0 to 1. The subset A of S can now be defined as the pullback of true along the characteristic function χA, shown on the following diagram:

Defined that way, χ is a morphism SubC(S) → HomC(S, Ω). By definition, Ω is a subobject classifier if this morphism is an isomorphism.

Definition

For the general definition, we start with a category C that has a terminal object, which we denote by 1. The object Ω of C is a subobject classifier for C if there exists a morphism

1 → Ω

with the following property:

For each monomorphism j: UX there is a unique morphism χ j: X → Ω such that the following commutative diagram
is a pullback diagram—that is, U is the limit of the diagram:

The morphism χ j is then called the classifying morphism for the subobject represented by j.

Further examples

Sheaves of sets

The category of sheaves of sets on a topological space X has a subobject classifier Ω which can be described as follows: For any open set U of X, Ω(U) is the set of all open subsets of U. The terminal object is the sheaf 1 which assigns the singleton {*} to every open set U of X. The morphism η:1 → Ω is given by the family of maps ηU : 1(U) → Ω(U) defined by ηU(*)=U for every open set U of X. Given a sheaf F on X and a sub-sheaf j: GF, the classifying morphism χ j : F → Ω is given by the family of maps χ j,U : F(U) → Ω(U), where χ j,U(x) is the union of all open sets V of U such that the restriction of x to V (in the sense of sheaves) is contained in jV(G(V)).

Roughly speaking an assertion inside this topos is variably true or false, and its truth value from the viewpoint of an open subset U is the open subset of U where the assertion is true.

Presheaves

Given a small category , the category of presheaves (i.e. the functor category consisting of all contravariant functors from to ) has a subobject classifer given by the functor sending any to the set of sieves on . The classifying morphisms are constructed quite similarly to the ones in the sheaves-of-sets example above.

Elementary topoi

Both examples above are subsumed by the following general fact: every elementary topos, defined as a category with finite limits and power objects, necessarily has a subobject classifier.[1] The two examples above are Grothendieck topoi, and every Grothendieck topos is an elementary topos.

A quasitopos has an object that is almost a subobject classifier; it only classifies strong subobjects.

Notes

  1. ^ Pedicchio & Tholen (2004) p.8

References

  • Artin, Michael; Alexander Grothendieck; Jean-Louis Verdier (1964). Séminaire de Géometrie Algébrique IV. Springer-Verlag.
  • Barr, Michael; Charles Wells (1985). Toposes, Triples and Theories. Springer-Verlag. ISBN 0-387-96115-1.
  • Bell, John (1988). Toposes and Local Set Theories: an Introduction. Oxford: Oxford University Press.
  • Goldblatt, Robert (1983). Topoi: The Categorial Analysis of Logic. North-Holland, Reprinted by Dover Publications, Inc (2006). ISBN 0-444-85207-7.
  • Johnstone, Peter (2002). Sketches of an Elephant: A Topos Theory Compendium. Oxford: Oxford University Press.
  • Johnstone, Peter (1977). Topos Theory. Academic Press. ISBN 0-12-387850-0.
  • Mac Lane, Saunders (1998). Categories for the Working Mathematician. Graduate Texts in Mathematics. Vol. 5 (2nd ed.). New York, NY: Springer-Verlag. ISBN 0-387-98403-8. Zbl 0906.18001.
  • Mac Lane, Saunders; Ieke Moerdijk (1992). Sheaves in Geometry and Logic: a First Introduction to Topos Theory. Springer-Verlag. ISBN 0-387-97710-4.
  • McLarty, Colin (1992). Elementary Categories, Elementary Toposes. Oxford: Oxford University Press. ISBN 0-19-853392-6.
  • Pedicchio, Maria Cristina; Tholen, Walter, eds. (2004). Categorical foundations. Special topics in order, topology, algebra, and sheaf theory. Encyclopedia of Mathematics and Its Applications. Vol. 97. Cambridge: Cambridge University Press. ISBN 0-521-83414-7. Zbl 1034.18001.
  • Taylor, Paul (1999). Practical Foundations of Mathematics. Cambridge: Cambridge University Press. ISBN 0-521-63107-6.

Read other articles:

Orca[1]Seguni Periode Pliosen hingga kini[2] PreЄ Є O S D C P T J K Pg N ↓ Orcinus orca Dua ekor seguni dekat Pulau Unimak, di timur Kepulauan Aleut, AlaskaPerbandingan ukuran dengan manusiaRekaman Status konservasiKekurangan dataIUCN15421 TaksonomiKerajaanAnimaliaFilumChordataKelasMammaliaOrdoArtiodactylaFamiliDelphinidaeGenusOrcinusSpesiesOrcinus orca (Linnaeus, 1758) Tata namaSinonim taksonDelphinus orca (en)Delphinus gladiator (en) ProtonimDelphinus orca Distribusi...

 

Stasiun Kaku賀来駅Halaman depan Stasiun Kaku pada 2005.LokasiJepangKoordinat33°12′47″N 131°33′45″E / 33.21306°N 131.56250°E / 33.21306; 131.56250Koordinat: 33°12′47″N 131°33′45″E / 33.21306°N 131.56250°E / 33.21306; 131.56250Operator JR KyushuJalur■ Jalur Utama KyūdaiLetak133.9 km dari KurumeJumlah peron1 peron sampingJumlah jalur1KonstruksiJenis strukturAtas tanahInformasi lainStatusTanpa stafSitus webSitus web res...

 

Di banyak negara di Afrika, jerigen yang digunakan untuk mengangkut dan menyimpan air merupakan pilihan yang baik untuk penyimpanan yang aman Air di Afrika adalah masalah penting yang mencakup sumber, distribusi, dan penggunaan ekonomi sumber daya air di benua itu. Secara keseluruhan, Afrika memiliki sekitar 9% sumber daya air tawar dunia dan 16% populasi dunia.[1] Di antara sungainya adalah Kongo, Nil, Zambezi, dan Niger, serta Danau Victoria yang dianggap sebagai danau terbesar kedu...

January 2010 earthquake in California 2010 California earthquake redirects here. For the April earthquake affecting Southern California, see 2010 Baja California earthquake. 2010 Eureka earthquakeSanta CruzRenoEurekaUTC time2010-01-10 00:27:41ISC event14223208USGS-ANSSComCatLocal dateJanuary 9, 2010 (2010-01-09)Local time16:27:38 PSTDuration~10 seconds at King Salmon[1]Magnitude6.5 Mw[2]Depth13.5 miles (21.7 km)Epicenter40°39′N 124°4...

 

School district in Missouri, US Ritenour School DistrictLocation2420 Woodson Road St. Louis, MO 63114 United StatesDistrict informationMottoEvery Student, Every DayEstablished1846SuperintendentDr. Christopher KilbrideSchools10Budget$71,255,000 (2015-16)[1]NCES District ID1931680 [1]Students and staffStudents6449 [1](2018-19)Teachers386.36 FTE [1]Staff251.60 FTE [1]Student–teacher ratio16.69 [1]Athletic conferenceSuburban XIIDistrict mascotHusk...

 

العلاقات الإيرانية السورينامية إيران سورينام   إيران   سورينام تعديل مصدري - تعديل   العلاقات الإيرانية السورينامية هي العلاقات الثنائية التي تجمع بين إيران وسورينام.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المق...

اختصاراتمساعدة:أرشفة ويبمساعدة:أرشفة مصدر هذه صفحة مساعدة لكيفية عمل شيء ما.تفصّل هذه الصفحة طرق أو إجراءات بعض جوانب قواعد وممارسات ويكيبيديا. هذه الصفحة ليست واحدة من سياسات أو إرشادات ويكيبيديا، حيث لم تفحص بدقة عبر المجتمع. (نشرت في 5 سبتمبر 2020) مقطع مرئي يظهر خطوات أرش�...

 

Disambiguazione – Se stai cercando la sua controparte cinematografica, vedi Thor (Marvel Cinematic Universe). ThorThor, disegnato da Alan Davis UniversoUniverso Marvel Lingua orig.Inglese AutoriStan Lee Larry Lieber Jack Kirby EditoreMarvel Comics 1ª app.agosto 1962 1ª app. inJourney into Mystery (vol. 1[1]) n. 83 Editore it.Editoriale Corno 1ª app. it.gennaio 1971 1ª app. it. inIl Mitico Thor n. 1 Caratteristiche immaginarieNome completoThor Odinson Alter ...

 

Coppa Mitropa 1962 Competizione Coppa Mitropa Sport Calcio Edizione 22ª Date dal 12 maggio 1962al 17 ottobre 1962 Luogo Europa Partecipanti 16 Nazioni 4 Risultati Vincitore  Vasas(3º titolo) Secondo  Bologna Statistiche Miglior marcatore Harald Nielsen (11) Incontri disputati 54 Gol segnati 184 (3,41 per incontro) Cronologia della competizione 1961 1963 Manuale La Coppa Mitropa 1962 fu la ventiduesima edizione del torneo e venne vinta dagli ungheresi del Vasas, ...

Rural locality in Odesa Oblast, Ukraine Rural settlement in Odesa Oblast, UkraineSavran СавраньRural settlementSavranShow map of Odesa OblastSavranShow map of UkraineCoordinates: 48°07′44″N 30°04′47″E / 48.12889°N 30.07972°E / 48.12889; 30.07972Country UkraineOblastOdesa OblastRaionPodilsk RaionHromadaSavran settlement hromadaPopulation (2022)[1] • Total6,074Time zoneUTC+2 (EET) • Summer (DST)UTC+3 (EEST) Sav...

 

اضغط هنا للاطلاع على كيفية قراءة التصنيف فصيلة الضفادع الحقيقية ضفدع شائع المرتبة التصنيفية فصيلة[1]  التصنيف العلمي النطاق: حقيقيات النوى المملكة: حيوانات الشعبة: حبليات الشعيبة: فقاريات الطائفة: برمائيات الرتبة: بتراوات الرتيبة: ضفادع جديدة الفصيلة العليا: ضفدعيا...

 

梅拉蒂·达伊瓦·奥克塔维亚尼Melati Daeva Oktavianti基本資料代表國家/地區 印度尼西亞出生 (1994-10-28) 1994年10月28日(29歲)[1] 印度尼西亞万丹省西冷[1]身高1.68米(5英尺6英寸)[1]握拍右手[1]主項:女子雙打、混合雙打職業戰績48勝–27負(女雙)109勝–56負(混雙)最高世界排名第4位(混雙-普拉文·喬丹)(2020年3月17日[2])現時世界排名第...

Human settlement in EnglandSydenhamSydenham AvenueSydenhamLocation within Greater LondonPopulation28,378 (SE26 postcode area)[1]OS grid referenceTQ352714London boroughLewishamBromleyCeremonial countyGreater LondonRegionLondonCountryEnglandSovereign stateUnited KingdomPost townLONDONPostcode districtSE26Dialling code020PoliceMetropolitanFireLondonAmbulanceLondon UK ParliamentLewisham West and PengeLondon AssemblyGreenwich and LewishamB...

 

Overview of and topical guide to war The following outline is provided as an overview of and topical guide to war: War – organised and often prolonged armed conflict that is carried out by states or non-state actors – is characterised by extreme violence, social disruption, and economic destruction.[1][2] War should be understood as an actual, intentional and widespread armed conflict between political communities, and therefore is defined as a form of political violence o...

 

American botanist, taxonomist (1859-1934) Nathaniel Lord BrittonBorn(1859 -01-15)January 15, 1859Staten Island, New YorkDiedJune 25, 1934(1934-06-25) (aged 75)Bronx, New YorkEducationColumbia University School of MinesKnown forIllustrated Flora of the Northern United States, Canada, and the British Possessions, with Addison Brown; The Cactaceae‘‘, with Joseph Nelson RoseSpouseElizabeth Gertrude KnightScientific careerFieldsBotanyInstitutionsColumbia University, New York Botanica...

Jet-powered drone This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (September 2011) (Learn how and when to remove this message) This article's lead section may be too short to adequately summarize the key poin...

 

Lagosanto komune di Italia Tempat Negara berdaulatItaliaDaerah di ItaliaEmilia-RomagnaProvinsi di ItaliaProvinsi Ferrara NegaraItalia Ibu kotaLagosanto PendudukTotal4.718  (2023 )GeografiLuas wilayah34,44 km² [convert: unit tak dikenal]Ketinggian2 m Berbatasan denganCodigoro Fiscaglia (en) Comacchio Ostellato SejarahSanto pelindungVenantius Informasi tambahanKode pos44023 Zona waktuUTC+1 UTC+2 Kode telepon0533 ID ISTAT038011 Kode kadaster ItaliaE410 Lain-lainSitus webLaman resmi La...

 

Overview of the procedure of elections in the Indian state of Tamil Nadu This article is part of a series on thePolitics of Tamil Nadu Constitution Amendment Basic structure doctrine Fundamental Rights, Directive Principles and Fundamental Duties of India Human rights Judicial review Taxation Uniform Civil Code Government Governor R. N. Ravi (15th) Chief Minister M. K. Stalin (8th) Deputy Chief Minister Udhayanidhi Stalin (3rd) Ministers Departments Organizations Legislature Tamil Nadu Legisl...

خوان كاميلو زونيغا (بالإسبانية: Juan Camilo Zúñiga)‏  معلومات شخصية الاسم الكامل خوان كاميلو زونيغا موسكيرا الميلاد 14 ديسمبر 1985 (العمر 38 سنة)كولومبيا الطول 1.72 م (5 قدم 7 1⁄2 بوصة)[1][1] مركز اللعب مدافع الجنسية كولومبيا  معلومات النادي النادي الحالي واتفورد �...

 

Map of Operations Cobra and Spring This is the order of battle for Operation Cobra, a World War II American offensive against German forces in Normandy, France that lasted 25-31 July 1944. American order of battle First Army Lieutenant General Omar N. Bradley Organization of VII, VIII, and XIX U.S. Army Corps during Operation Cobra 25 July 1944 VII Corps Main article: VII Corps (United States) J. Lawton Collins as a full general 105 mm Howitzer M3 M4 Sherman tanks Major General J. Lawton Coll...