Formal system

A formal system is an abstract structure and formalization of an axiomatic system used for deducing, using rules of inference, theorems from axioms by a set of inference rules.[1]

In 1921, David Hilbert proposed to use formal systems as the foundation of knowledge in mathematics.[2]

The term formalism is sometimes a rough synonym for formal system, but it also refers to a given style of notation, for example, Paul Dirac's bra–ket notation.

Concepts

This diagram shows the syntactic entities that may be constructed from formal languages. The symbols and strings of symbols may be broadly divided into nonsense and well-formed formulas. A formal language can be thought of as identical to the set of its well-formed formulas, which may be broadly divided into theorems and non-theorems.

A formal system has the following:[3][4][5]

A formal system is said to be recursive (i.e. effective) or recursively enumerable if the set of axioms and the set of inference rules are decidable sets or semidecidable sets, respectively.

Formal language

A formal language is a language that is defined by a formal system. Like languages in linguistics, formal languages generally have two aspects:

  • the syntax is what the language looks like (more formally: the set of possible expressions that are valid utterances in the language)
  • the semantics are what the utterances of the language mean (which is formalized in various ways, depending on the type of language in question)

Usually only the syntax of a formal language is considered via the notion of a formal grammar. The two main categories of formal grammar are that of generative grammars, which are sets of rules for how strings in a language can be written, and that of analytic grammars (or reductive grammar[6][7]), which are sets of rules for how a string can be analyzed to determine whether it is a member of the language.

Deductive system

A deductive system, also called a deductive apparatus,[8] consists of the axioms (or axiom schemata) and rules of inference that can be used to derive theorems of the system.[9]

Such deductive systems preserve deductive qualities in the formulas that are expressed in the system. Usually the quality we are concerned with is truth as opposed to falsehood. However, other modalities, such as justification or belief may be preserved instead.

In order to sustain its deductive integrity, a deductive apparatus must be definable without reference to any intended interpretation of the language. The aim is to ensure that each line of a derivation is merely a logical consequence of the lines that precede it. There should be no element of any interpretation of the language that gets involved with the deductive nature of the system.

The logical consequence (or entailment) of the system by its logical foundation is what distinguishes a formal system from others which may have some basis in an abstract model. Often the formal system will be the basis for or even identified with a larger theory or field (e.g. Euclidean geometry) consistent with the usage in modern mathematics such as model theory.[clarification needed]

An example of a deductive system would be the rules of inference and axioms regarding equality used in first order logic.

The two main types of deductive systems are proof systems and formal semantics.[8]

Proof system

Formal proofs are sequences of well-formed formulas (or WFF for short) that might either be an axiom or be the product of applying an inference rule on previous WFFs in the proof sequence. The last WFF in the sequence is recognized as a theorem.

Once a formal system is given, one can define the set of theorems which can be proved inside the formal system. This set consists of all WFFs for which there is a proof. Thus all axioms are considered theorems. Unlike the grammar for WFFs, there is no guarantee that there will be a decision procedure for deciding whether a given WFF is a theorem or not.

The point of view that generating formal proofs is all there is to mathematics is often called formalism. David Hilbert founded metamathematics as a discipline for discussing formal systems. Any language that one uses to talk about a formal system is called a metalanguage. The metalanguage may be a natural language, or it may be partially formalized itself, but it is generally less completely formalized than the formal language component of the formal system under examination, which is then called the object language, that is, the object of the discussion in question. The notion of theorem just defined should not be confused with theorems about the formal system, which, in order to avoid confusion, are usually called metatheorems.

Formal semantics of logical system

A logical system is a deductive system (most commonly first order logic) together with additional non-logical axioms. According to model theory, a logical system may be given interpretations which describe whether a given structure - the mapping of formulas to a particular meaning - satisfies a well-formed formula. A structure that satisfies all the axioms of the formal system is known as a model of the logical system.

A logical system is:

  • Sound, if each well-formed formula that can be inferred from the axioms is satisfied by every model of the logical system.
  • Semantically complete, if each well-formed formula that is satisfied by every model of the logical system can be inferred from the axioms.

An example of a logical system is Peano arithmetic. The standard model of arithmetic sets the domain of discourse to be the nonnegative integers and gives the symbols their usual meaning.[10] There are also non-standard models of arithmetic.

History

Early logic systems includes Indian logic of Pāṇini, syllogistic logic of Aristotle, propositional logic of Stoicism, and Chinese logic of Gongsun Long (c. 325–250 BCE) . In more recent times, contributors include George Boole, Augustus De Morgan, and Gottlob Frege. Mathematical logic was developed in 19th century Europe.

David Hilbert instigated a formalist movement called Hilbert’s program as a proposed solution to the foundational crisis of mathematics, that was eventually tempered by Gödel's incompleteness theorems.[2] The QED manifesto represented a subsequent, as yet unsuccessful, effort at formalization of known mathematics.

See also

References

  1. ^ "Formal system | Logic, Symbols & Axioms | Britannica". www.britannica.com. Retrieved 2023-10-10.
  2. ^ a b Zach, Richard (31 July 2003). "Hilbert's Program". Hilbert's Program, Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University.
  3. ^ "formal system". planetmath.org. Retrieved 2023-10-10.
  4. ^ Rapaport, William J. (25 March 2010). "Syntax & Semantics of Formal Systems". University of Buffalo.
  5. ^ "Definition:Formal System - ProofWiki". proofwiki.org. Retrieved 2023-10-16.
  6. ^ Reductive grammar: (computer science) A set of syntactic rules for the analysis of strings to determine whether the strings exist in a language. "Sci-Tech Dictionary McGraw-Hill Dictionary of Scientific and Technical Terms" (6th ed.). McGraw-Hill.[unreliable source?] About the Author Compiled by The Editors of the McGraw-Hill Encyclopedia of Science & Technology (New York, NY) an in-house staff who represents the cutting-edge of skill, knowledge, and innovation in science publishing. [1]
  7. ^ "There are two classes of formal-language definition compiler-writing schemes. The productive grammar approach is the most common. A productive grammar consists primarrly of a set of rules that describe a method of generating all possible strings of the language. The reductive or analytical grammar technique states a set of rules that describe a method of analyzing any string of characters and deciding whether that string is in the language." "The TREE-META Compiler-Compiler System: A Meta Compiler System for the Univac 1108 and General Electric 645, University of Utah Technical Report RADC-TR-69-83. C. Stephen Carr, David A. Luther, Sherian Erdmann" (PDF). Retrieved 5 January 2015.
  8. ^ a b "Definition:Deductive Apparatus - ProofWiki". proofwiki.org. Retrieved 2023-10-10.
  9. ^ Hunter, Geoffrey, Metalogic: An Introduction to the Metatheory of Standard First-Order Logic, University of California Press, 1971
  10. ^ Kaye, Richard (1991). "1. The Standard Model". Models of Peano arithmetic. Oxford: Clarendon Press. p. 10. ISBN 9780198532132.

Further reading

Read other articles:

Permainan papan astronomi, dari Libro de los juegos Libro de los Juegos (Buku Permainan), atau Libro de acedrex, dados e tablas (Buku catur, dadu, dan tabel) adalah buku dari abad ke-13 yang ditulis atas pesanan Alfonso X dari Kastilia (Alfonso X yang Bijak), raja dari León dan Kerajaan Kastilia. Penulisan buku ini diselesaikan pada tahun 1283.[1] Isinya terdiri dari 98 halaman. Sebagian besar di antaranya berupa ilustrasi berwarna.[1] Permainan yang dibahas antara lain adala...

Victoria, monarca británica de 1837 a 1901 La moral victoriana es la síntesis de las opiniones morales de los contemporáneos de la reina Victoria (1837–1901) y del clima moral general imperante en el Reino Unido en el siglo  XIX, muy diferente al del anterior periodo georgiano. Muchos de estos valores se extendieron por el Imperio Británico. En la actualidad, el término «moral victoriana» describe cualquier conjunto de valores que engloben una fuerte represión sexual, baja tole...

«Зіткнення поглядів» у запеклій політичній суперечці Зоровий або очний контакт, також погляд «очі в очі», є важливою частиною невербальної комунікації в людей та різних видів тварин. Характер зорових контактів відіграє велику роль у соціальній поведінці. Негласні прав�...

Incredulidade de S. Tomé, 1595-1597 (Museu de Arouca.[1]) Esta é uma lista de pinturas de Diogo Teixeira, lista não exaustiva das pinturas deste artista, mas tão só das que se encontram registadas na Wikidata. A lista está ordenada pela data de criação de cada pintura. Existem obras para as quais não foi ainda registada a data precisa de criação aparecendo apenas como tendo sido no século conhecido surgindo no final da lista. Como nas outras listas geradas a partir da Wikidata, os...

Дружников Володимир ВасильовичНародився 30 травня 1922(1922-05-30)[1]Москва, Російська СФРРПомер 20 лютого 1994(1994-02-20)[1] (71 рік)Москва, РосіяПоховання Троєкуровське кладовище :  Країна  СРСР РосіяДіяльність акторAlma mater Школа-студія МХАТЗнання мов російськаЗаклад Д

Anis MansourLahir(1924-08-18)18 Agustus 1924 MesirMeninggal21 Oktober 2011(2011-10-21) (umur 87) Kairo, MesirPekerjaanPenulisKebangsaan Mesir Anis Mansour (18 Agustus 1924 – 21 Oktober 2011) Anis Mansour, juga ditransliterasikan sebagai Anis Manur adalah seorang penulis Mesir. Karya Beberapa buku Anis Mansour antara lain: (bahasa Inggris: Speak so I can See You) (bahasa Inggris: A Stranger in Foreign Countries) (Prancis: Mon cher inconnu) Lihat pula Daftar penulis Mesir Ref...

Overview of education in the Central African RepublicYou can help expand this article with text translated from the corresponding article in French. (December 2019) Click [show] for important translation instructions. View a machine-translated version of the French article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-p...

Моє чуже життятур. O Hayat Benim Тип телесеріалТелеканал(и) FOX TV 1+1 БігудіЖанр драмаТривалість серії 170 хв 40-45 хвКомпанія Pastel FilmСценарист Гюль Абус СемерджіРежисер Хамді Алкан Садуллах ШентюркПродюсери Яшар ІрвюлУ головних ролях Езгі Асароглу Керемджем Джерен МорайКомпози�...

American politicianThis article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: John C. Box – news · newspapers · books · scholar · JSTOR (January 2023) (Learn how and when to remove this template message) John C. BoxMember of the U.S. House of Representativesfrom Texas's 2nd districtIn officeMarch 4, 1919...

1634–1757 Oirat Mongol khanate in Dzungaria Dzungar Khanate1634–1758Dzungar Khanate in the early 18th century[1][2]StatusNomadic empireCapitalGhulja[3]Common languagesOirat, Chagatai[4]Religion Tibetan BuddhismGovernmentMonarchyKhan or Khong Tayiji • 1632-1653 Erdeni Batur (first)• 1671-1697 Galdan Boshugtu Khan• 1745-1750 Tsewang Dorji Namjal Legislature Customary rules Mongol-Oirat Code of 1640 Historical eraEarly modern per...

Historic house in South Carolina, United States United States historic placeFountain Fox Beattie HouseU.S. National Register of Historic Places Greenville Woman's ClubShow map of South CarolinaShow map of the United StatesLocation8 Bennett Street, Greenville, South CarolinaCoordinates34°51′25″N 82°23′22″W / 34.85694°N 82.38944°W / 34.85694; -82.38944Arealess than one acreBuilt1834Architectural styleItalianate, Italian VillaNRHP reference No.7...

Iranian actress (1952–2023) Farimah Farjamiفریماه فرجامیFarjami in 1980Born(1952-05-08)8 May 1952Tehran, IranDied30 June 2023(2023-06-30) (aged 71)NationalityIranianEducationTehran University of Art (BA)OccupationActressYears active1976–2019 Farimah Farjami (Persian: فریماه فرجامی, 8 May 1952 – 30 June 2023) was an Iranian actress. She received various accolades, including a Crystal Simorgh for The Last Act (1991). Her acting in films, especially in ind...

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: List of Telugu films of 2005 – news · newspapers · books · scholar · JSTOR (September 2019) This ...

2015 Canadian filmFemale WerewolfDirected byChris AlexanderWritten byChris AlexanderProduced byDerek CurlStarringCarrie GemmellShauna HenryCheryl SingletonCinematographyChris AlexanderEdited byChris AlexanderMusic byChris AlexanderProductioncompanyArtsploitation FilmsDistributed byArtsploitation FilmsRelease date October 16, 2015 (2015-10-16) (Festival de Cine de Sitges) CountriesCanadaUnited StatesLanguageEnglish Female Werewolf is a 2015 independent horror film that was w...

Kongres Amerika Serikat ke-105Gedung Kapitol (1997)Periode3 Januari 1997 – 3 Januari 1999Anggota100 senator435 anggota dewan5 delegasi tanpa suaraMayoritas SenatPartai RepublikPresiden SenatAl Gore (D)Mayoritas DPRPartai RepublikKetua DPRNewt Gingrich (R)Pres. Senat Pro TemporeStrom Thurmond (R)Sesike-1: 7 Januari 1997 – 13 November 1997ke-2: 27 Januari 1998 – 19 Desember 1998ke-104 ←→ ke-106 Kongres Amerika Serikat ke-105 adalah sebuah pertemuan cabang legislatif pem...

13th episode of the 23rd season of The Simpsons The Daughter Also RisesThe Simpsons episodeEpisode no.Season 23Episode 13Directed byChuck SheetzWritten byRob LaZebnikProduction codePABF06Original air dateFebruary 12, 2012 (2012-02-12)Guest appearances Michael Cera as Nick Jamie Hyneman as himself Adam Savage as himself Episode featuresChalkboard gagI will not replace a candy heart with a frog's heartCouch gagMoe and a group of ancillary characters come in and congratulate ...

  لمعانٍ أخرى، طالع وزارة العمل (توضيح).    وزارة العمل (الولايات المتحدة) وزارة العمل (الولايات المتحدة) وزارة العمل (الولايات المتحدة)ختم   تفاصيل الوكالة الحكومية البلد الولايات المتحدة  مؤسس ويليام هوارد تافت  تأسست 4 مارس 1913؛ منذ 110 سنين (1913-03-04)...

Subway line in Seoul, South Korea Line 5 4th Generation Line 5 trainOverviewNative name5호선(五號線)O HoseonStatusOperationalTerminiBanghwaHanam Geomdansan / MacheonStations57ServiceTypeRapid transitSystemSeoul Metropolitan SubwayOperator(s)Seoul MetroHistoryOpened15 November 1995TechnicalLine length58.9 km (36.6 mi)[1]Number of tracks2Electrification1,500 V DC overhead catenary Route map Seoul Subway Line 5 of the Seoul Metropolitan Subway, dubbed the pur...

Inside term for the American New Right This article is part of a series onConservatismin the United States Schools Compassionate Fiscal Fusion Libertarian Moderate Movement Neo Paleo Progressive Social Traditionalist Principles American exceptionalism Anti-communism Christian nationalism Classical liberalism Constitutionalism Family values Judeo-Christian values Limited government Militarism Moral absolutism Natural law Patriotism Republicanism Right to bear arms Rule of law Tradition History...

1979 greatest hits album by Barbara MandrellThe Best of Barbara MandrellGreatest hits album by Barbara MandrellReleasedJanuary 19, 1979GenreCountry popLength29:46LabelMCA NashvilleBarbara Mandrell chronology Just for the Record(1979) The Best of Barbara Mandrell(1979) Love Is Fair(1980) Professional ratingsReview scoresSourceRatingAllmusic LinkChristgau's Record GuideC+[1] The Best of Barbara Mandrell is a compilation album by American country music singer, Barbara Mandrell, r...