Inaccessible cardinal

In set theory, an uncountable cardinal is inaccessible if it cannot be obtained from smaller cardinals by the usual operations of cardinal arithmetic. More precisely, a cardinal κ is strongly inaccessible if it satisfies the following three conditions: it is uncountable, it is not a sum of fewer than κ cardinals smaller than κ, and implies .

The term "inaccessible cardinal" is ambiguous. Until about 1950, it meant "weakly inaccessible cardinal", but since then it usually means "strongly inaccessible cardinal". An uncountable cardinal is weakly inaccessible if it is a regular weak limit cardinal. It is strongly inaccessible, or just inaccessible, if it is a regular strong limit cardinal (this is equivalent to the definition given above). Some authors do not require weakly and strongly inaccessible cardinals to be uncountable (in which case is strongly inaccessible). Weakly inaccessible cardinals were introduced by Hausdorff (1908), and strongly inaccessible ones by Sierpiński & Tarski (1930) and Zermelo (1930); in the latter they were referred to along with as Grenzzahlen (English "limit numbers").[1]

Every strongly inaccessible cardinal is also weakly inaccessible, as every strong limit cardinal is also a weak limit cardinal. If the generalized continuum hypothesis holds, then a cardinal is strongly inaccessible if and only if it is weakly inaccessible.

(aleph-null) is a regular strong limit cardinal. Assuming the axiom of choice, every other infinite cardinal number is regular or a (weak) limit. However, only a rather large cardinal number can be both and thus weakly inaccessible.

An ordinal is a weakly inaccessible cardinal if and only if it is a regular ordinal and it is a limit of regular ordinals. (Zero, one, and ω are regular ordinals, but not limits of regular ordinals.) A cardinal which is weakly inaccessible and also a strong limit cardinal is strongly inaccessible.

The assumption of the existence of a strongly inaccessible cardinal is sometimes applied in the form of the assumption that one can work inside a Grothendieck universe, the two ideas being intimately connected.

Models and consistency

Suppose that is a cardinal number. Zermelo–Fraenkel set theory with Choice (ZFC) implies that the th level of the Von Neumann universe is a model of ZFC whenever is strongly inaccessible. Furthermore, ZF implies that the Gödel universe is a model of ZFC whenever is weakly inaccessible. Thus, ZF together with "there exists a weakly inaccessible cardinal" implies that ZFC is consistent. Therefore, inaccessible cardinals are a type of large cardinal.

If is a standard model of ZFC and is an inaccessible in , then

  1. is one of the intended models of Zermelo–Fraenkel set theory;
  2. is one of the intended models of Mendelson's version of Von Neumann–Bernays–Gödel set theory which excludes global choice, replacing limitation of size by replacement and ordinary choice;
  3. and is one of the intended models of Morse–Kelley set theory.

Here, is the set of Δ0-definable subsets of X (see constructible universe). It is worth pointing out that the first claim can be weakened: does not need to be inaccessible, or even a cardinal number, in order for to be a standard model of ZF (see below).

Suppose is a model of ZFC. Either contains no strong inaccessible or, taking to be the smallest strong inaccessible in , is a standard model of ZFC which contains no strong inaccessibles. Thus, the consistency of ZFC implies consistency of ZFC+"there are no strong inaccessibles". Similarly, either V contains no weak inaccessible or, taking to be the smallest ordinal which is weakly inaccessible relative to any standard sub-model of , then is a standard model of ZFC which contains no weak inaccessibles. So consistency of ZFC implies consistency of ZFC+"there are no weak inaccessibles". This shows that ZFC cannot prove the existence of an inaccessible cardinal, so ZFC is consistent with the non-existence of any inaccessible cardinals.

The issue whether ZFC is consistent with the existence of an inaccessible cardinal is more subtle. The proof sketched in the previous paragraph that the consistency of ZFC implies the consistency of ZFC + "there is not an inaccessible cardinal" can be formalized in ZFC. However, assuming that ZFC is consistent, no proof that the consistency of ZFC implies the consistency of ZFC + "there is an inaccessible cardinal" can be formalized in ZFC. This follows from Gödel's second incompleteness theorem, which shows that if ZFC + "there is an inaccessible cardinal" is consistent, then it cannot prove its own consistency. Because ZFC + "there is an inaccessible cardinal" does prove the consistency of ZFC, if ZFC proved that its own consistency implies the consistency of ZFC + "there is an inaccessible cardinal" then this latter theory would be able to prove its own consistency, which is impossible if it is consistent.

There are arguments for the existence of inaccessible cardinals that cannot be formalized in ZFC. One such argument, presented by Hrbáček & Jech (1999, p. 279), is that the class of all ordinals of a particular model M of set theory would itself be an inaccessible cardinal if there was a larger model of set theory extending M and preserving powerset of elements of M.

Existence of a proper class of inaccessibles

There are many important axioms in set theory which assert the existence of a proper class of cardinals which satisfy a predicate of interest. In the case of inaccessibility, the corresponding axiom is the assertion that for every cardinal μ, there is an inaccessible cardinal κ which is strictly larger, μ < κ. Thus, this axiom guarantees the existence of an infinite tower of inaccessible cardinals (and may occasionally be referred to as the inaccessible cardinal axiom). As is the case for the existence of any inaccessible cardinal, the inaccessible cardinal axiom is unprovable from the axioms of ZFC. Assuming ZFC, the inaccessible cardinal axiom is equivalent to the universe axiom of Grothendieck and Verdier: every set is contained in a Grothendieck universe. The axioms of ZFC along with the universe axiom (or equivalently the inaccessible cardinal axiom) are denoted ZFCU (not to be confused with ZFC with urelements). This axiomatic system is useful to prove for example that every category has an appropriate Yoneda embedding.

This is a relatively weak large cardinal axiom since it amounts to saying that ∞ is 1-inaccessible in the language of the next section, where ∞ denotes the least ordinal not in V, i.e. the class of all ordinals in your model.

α-inaccessible cardinals and hyper-inaccessible cardinals

The term "α-inaccessible cardinal" is ambiguous and different authors use inequivalent definitions. One definition is that a cardinal κ is called α-inaccessible, for any ordinal α, if κ is inaccessible and for every ordinal β < α, the set of β-inaccessibles less than κ is unbounded in κ (and thus of cardinality κ, since κ is regular). In this case the 0-inaccessible cardinals are the same as strongly inaccessible cardinals. Another possible definition is that a cardinal κ is called α-weakly inaccessible if κ is regular and for every ordinal β < α, the set of β-weakly inaccessibles less than κ is unbounded in κ. In this case the 0-weakly inaccessible cardinals are the regular cardinals and the 1-weakly inaccessible cardinals are the weakly inaccessible cardinals.

The α-inaccessible cardinals can also be described as fixed points of functions which count the lower inaccessibles. For example, denote by ψ0(λ) the λth inaccessible cardinal, then the fixed points of ψ0 are the 1-inaccessible cardinals. Then letting ψβ(λ) be the λth β-inaccessible cardinal, the fixed points of ψβ are the (β+1)-inaccessible cardinals (the values ψβ+1(λ)). If α is a limit ordinal, an α-inaccessible is a fixed point of every ψβ for β < α (the value ψα(λ) is the λth such cardinal). This process of taking fixed points of functions generating successively larger cardinals is commonly encountered in the study of large cardinal numbers.

The term hyper-inaccessible is ambiguous and has at least three incompatible meanings. Many authors use it to mean a regular limit of strongly inaccessible cardinals (1-inaccessible). Other authors use it to mean that κ is κ-inaccessible. (It can never be κ+1-inaccessible.) It is occasionally used to mean Mahlo cardinal.

The term α-hyper-inaccessible is also ambiguous. Some authors use it to mean α-inaccessible. Other authors use the definition that for any ordinal α, a cardinal κ is α-hyper-inaccessible if and only if κ is hyper-inaccessible and for every ordinal β < α, the set of β-hyper-inaccessibles less than κ is unbounded in κ.

Hyper-hyper-inaccessible cardinals and so on can be defined in similar ways, and as usual this term is ambiguous.

Using "weakly inaccessible" instead of "inaccessible", similar definitions can be made for "weakly α-inaccessible", "weakly hyper-inaccessible", and "weakly α-hyper-inaccessible".

Mahlo cardinals are inaccessible, hyper-inaccessible, hyper-hyper-inaccessible, ... and so on.

Two model-theoretic characterisations of inaccessibility

Firstly, a cardinal κ is inaccessible if and only if κ has the following reflection property: for all subsets , there exists such that is an elementary substructure of . (In fact, the set of such α is closed unbounded in κ.) Therefore, is -indescribable for all n ≥ 0. On the other hand, there is not necessarily an ordinal such that , and if this holds, then must be the th inaccessible cardinal.[2]

It is provable in ZF that has a somewhat weaker reflection property, where the substructure is only required to be 'elementary' with respect to a finite set of formulas. Ultimately, the reason for this weakening is that whereas the model-theoretic satisfaction relation can be defined, semantic truth itself (i.e. ) cannot, due to Tarski's theorem.

Secondly, under ZFC Zermelo's categoricity theorem can be shown, which states that is inaccessible if and only if is a model of second order ZFC.

In this case, by the reflection property above, there exists such that is a standard model of (first order) ZFC. Hence, the existence of an inaccessible cardinal is a stronger hypothesis than the existence of a transitive model of ZFC.

Inaccessibility of is a property over ,[3] while a cardinal being inaccessible (in some given model of containing ) is .[4]

See also

Works cited

  • Drake, F. R. (1974), Set Theory: An Introduction to Large Cardinals, Studies in Logic and the Foundations of Mathematics, vol. 76, Elsevier Science, ISBN 0-444-10535-2
  • Hausdorff, Felix (1908), "Grundzüge einer Theorie der geordneten Mengen", Mathematische Annalen, 65 (4): 435–505, doi:10.1007/BF01451165, hdl:10338.dmlcz/100813, ISSN 0025-5831, S2CID 119648544
  • Hrbáček, Karel; Jech, Thomas (1999), Introduction to set theory (3rd ed.), New York: Dekker, ISBN 978-0-8247-7915-3
  • Kanamori, Akihiro (2003), The Higher Infinite: Large Cardinals in Set Theory from Their Beginnings (2nd ed.), Springer, ISBN 3-540-00384-3
  • Sierpiński, Wacław; Tarski, Alfred (1930), "Sur une propriété caractéristique des nombres inaccessibles" (PDF), Fundamenta Mathematicae, 15: 292–300, doi:10.4064/fm-15-1-292-300, ISSN 0016-2736
  • Zermelo, Ernst (1930), "Über Grenzzahlen und Mengenbereiche: neue Untersuchungen über die Grundlagen der Mengenlehre" (PDF), Fundamenta Mathematicae, 16: 29–47, doi:10.4064/fm-16-1-29-47, ISSN 0016-2736. English translation: Ewald, William B. (1996), "On boundary numbers and domains of sets: new investigations in the foundations of set theory", From Immanuel Kant to David Hilbert: A Source Book in the Foundations of Mathematics, Oxford University Press, pp. 1208–1233, ISBN 978-0-19-853271-2.

References

  1. ^ A. Kanamori, "Zermelo and Set Theory", p.526. Bulletin of Symbolic Logic vol. 10, no. 4 (2004). Accessed 21 August 2023.
  2. ^ A. Enayat, "Analogues of the MacDowell-Specker_theorem for set theory" (2020), p.10. Accessed 9 March 2024.
  3. ^ K. Hauser, "Indescribable cardinals and elementary embeddings". Journal of Symbolic Logic vol. 56, iss. 2 (1991), pp.439--457.
  4. ^ K. J. Devlin, "Indescribability Properties and Small Large Cardinals" (1974). In ISILC Logic Conference: Proceedings of the International Summer Institute and Logic Colloquium, Kiel 1974, Lecture Notes in Mathematics, vol. 499 (1974)

Read other articles:

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (يونيو 2019) الحدثكأس اسكتلندا 2002–03 نادي دندي نادي رينجرز 0 1 التاريخ31 مايو 2003  الملعبهامبدن بارك  الحكمكيني كلار�...

 

Perbandingan ukuran paus biru dengan manusia. Organisme terbesar merujuk pada organisme terbesar yang pernah diketahui di Bumi. Hal ini dapat ditentukan melalui berbagai aspek, seperti massa, volume, luas, panjang, tinggi, atau bahkan ukuran genom. Beberapa organisme mengelompok dan membentuk superorganisme, tetapi tidak dianggap sebagai satu organisme tunggal. Misalnya, Great Barrier Reef adalah struktur besar dengan panjang 2.000 km yang terdiri dari banyak organisme dari banyak spesie...

 

Gaya atau nada penulisan artikel ini tidak mengikuti gaya dan nada penulisan ensiklopedis yang diberlakukan di Wikipedia. Bantulah memperbaikinya berdasarkan panduan penulisan artikel. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Artikel ini berisi konten yang ditulis dengan gaya sebuah iklan. Bantulah memperbaiki artikel ini dengan menghapus konten yang dianggap sebagai spam dan pranala luar yang tidak sesuai, dan tambahkan konten ensiklopedis yang ditulis dari sudut p...

1995 book by Helena Maria Viramontes Under the Feet of Jesus First editionAuthorHelena Maria ViramontesCountryUnited StatesLanguageEnglishGenreFictionPublished1995PublisherPlumeISBN9780452273870 Under the Feet of Jesus is a 1995 book by Helena Maria Viramontes and her first published novel. It was released in the United States by Plume and follows the lives of a Mexican-American migrant family working in the California grape fields. Plot The book follows Estrella and her family as they arrive...

 

Division 1 Féminine 2019-2020D1 Arkema féminine 2019-2020 Competizione Division 1 Féminine Sport Calcio Edizione 46ª Organizzatore FFF Date dal 24 agosto 2019al 22 febbraio 2020[1] Luogo  Francia Partecipanti 12 Risultati Vincitore Olympique Lione(18º titolo) Secondo Paris Saint-Germain Retrocessioni Olympique MarsigliaMetz Statistiche Miglior marcatore Katoto (16) Incontri disputati 96 Gol segnati 317 (3,3 per incontro) Pubblico 104 071 (1 084 p...

 

Voce principale: Eccellenza 2003-2004. Eccellenza Trentino-Alto Adige(DE) Oberliga Trentino-Südtirol2003-2004 Competizione Eccellenza Trentino-Alto Adige Sport Calcio Edizione 13ª Organizzatore FIGC - LNDComitato Regionale Trentino-Alto Adige Luogo  Italia Cronologia della competizione 2002-2003 2004-2005 Manuale Il campionato italiano di calcio di Eccellenza Trentino-Alto Adige 2003-2004 è stato il tredicesimo organizzato in Italia. Rappresenta il sesto livello del calcio italiano. ...

Western Electric Co., Inc.IndustriTelekomunikasiNasibPenyerapan, sisa-sisa yang masih beroperasi kemudian menjadi NokiaPenerusAT&T TechnologiesLucent TechnologiesAlcatel-LucentNokiaDidirikan1869DitutupFebruari 7, 1996KantorpusatManhattan, New York City, Amerika SerikatProdukTelepon, telepon sentral, komputer, komponen listrik dan elektronik, dan semua produk yang terkait dengan telekomunikasi lainnya dipasok ke Perusahaan Bell SystemIndukAT&T (1881–1996) Western Electric Company ada...

 

American TV series or program Only in America with Larry the Cable GuyGenreTravel documentaryStarringLarry the Cable GuyCountry of originUnited StatesOriginal languageEnglishNo. of seasons3No. of episodes50ProductionExecutive producers Craig Piligian Eddie Rohwedder J.P. Williams Larry the Cable Guy Susan Werbe Running time42 minutesProduction companies Parallel Entertainment Pilgrim Studios Original releaseNetworkHistoryReleaseFebruary 8, 2011 (2011-02-08) –August 28, 2013 ...

 

马蒂纽坎普斯Martinho Campos市镇马蒂纽坎普斯在巴西的位置坐标:19°19′55″S 45°14′13″W / 19.3319°S 45.2369°W / -19.3319; -45.2369国家巴西州米纳斯吉拉斯州面积 • 总计1,060.302 平方公里(409.385 平方英里)人口 • 總計12,165人 • 密度11.5人/平方公里(29.7人/平方英里) 马蒂纽坎普斯(葡萄牙语:Martinho Campos)是巴西米纳斯吉拉斯州的�...

  لمعانٍ أخرى، طالع الدمام (توضيح). مدينة الدمام الدمام[1]  الدمامشعار أمانة المنطقة الشرقية متضمنًا الدمام  خريطة الموقع تقسيم إداري البلد  السعودية[2] عاصمة لـ المنطقة الشرقية[3]  المنطقة المنطقة الشرقية المسؤولون أمير المنطقة سعود بن نايف بن عب�...

 

ヨハネス12世 第130代 ローマ教皇 教皇就任 955年12月16日教皇離任 964年5月14日先代 アガペトゥス2世次代 レオ8世個人情報出生 937年スポレート公国(中部イタリア)スポレート死去 964年5月14日 教皇領、ローマ原国籍 スポレート公国親 父アルベリーコ2世(スポレート公)、母アルダその他のヨハネステンプレートを表示 ヨハネス12世(Ioannes XII、937年 - 964年5月14日)は、ロ...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أغسطس 2020) قمة الرياض العالمية للصحة الرقمية هي مؤتمر دولي استضافته المملكة العربية السعودية عن بعد في أغسطس 2020 على هامش عام الرئاسة السعودية لمجموعة العشرين، ونظمته �...

Historic region around the city of Ely in Cambridgeshire, England Isle of ElyArea • 1891239,259 acres (968.2 km2) • 1961239,951 acres (971.0 km2) • Coordinates52°24′N 0°15.5′E / 52.400°N 0.2583°E / 52.400; 0.2583 Population • 189163,861 • 196189,180 History • OriginLiberty of Ely • Created1889 • Abolished1965 • Succeeded byCambridgeshire an...

 

CBO Chart, U.S. Holdings of Family Wealth 1989 to 2013. The top 10% of families held 76% of the wealth in 2013, while the bottom 50% of families held 1%. Inequality increased from 1989 to 2013.[1] The inequality of wealth (i.e. inequality in the distribution of assets) has substantially increased in the United States in recent decades.[2] Wealth commonly includes the values of any homes, automobiles, personal valuables, businesses, savings, and investments, as well as any ass...

 

American sitcom (1975–1985) Jeffersons redirects here. For other uses, see Jefferson (disambiguation). For the South Park episode, see The Jeffersons (South Park). The JeffersonsGenreSitcomCreated byDon NichollMichael RossBernie WestDeveloped byNorman LearDirected by Jack Shea (seasons 1–5) Various (seasons 4 & 10–11) Bob Lally (seasons 5–9) StarringIsabel SanfordSherman HemsleyMarla GibbsRoxie RokerFranklin CoverPaul BenedictMike EvansBerlinda TolbertZara CullyDamon EvansJay Hamm...

American drummer, composer, and bandleader (1909–1973) Gene KrupaKrupa in 1944Background informationBirth nameEugene Bertram KrupaBorn(1909-01-15)January 15, 1909Chicago, Illinois, U.S.DiedOctober 16, 1973(1973-10-16) (aged 64)Yonkers, New York, U.S.GenresJazzswingDixielandOccupationsMusicianbandleadercomposerInstrumentsDrumsYears active1920s–1973Musical artist Eugene Bertram Krupa (January 15, 1909 – October 16, 1973)[1] was an American jazz drummer, bandleader, and compos...

 

Peta menunjukan lokasi Sagbayan Sagbayan adalah munisipalitas yang terletak di provinsi Bohol, Filipina. Pada tahun 2007, munisipalitas ini memiliki populasi sebesar 19.399 jiwa. Pembagian wilayah Sagbayan terbagi menjadi 24 barangay, yaitu: Calangahan Canmano Canmaya Centro Canmaya Diot Dagnawan Kabasacan Kagawasan Katipunan Langtad Libertad Norte Libertad Sur Mantalongon Poblacion Sagbayan Sur San Agustin San Antonio San Isidro San Ramon San Roque San Vicente Norte San Vicente Sur Santa Cat...

 

1971 film by Anthony Harvey They Might Be GiantsTheatrical release posterDirected byAnthony HarveyScreenplay byJames GoldmanBased onThey Might Be Giants1961 playby James GoldmanProduced byJohn ForemanStarringGeorge C. ScottJoanne WoodwardJack GilfordLester RawlinsAl LewisRue McClanahanCinematographyVictor J. KemperEdited byGerald B. GreenbergMusic byJohn BarryProductioncompanyNewman-Foreman CompanyDistributed byUniversal PicturesRelease date June 9, 1971 (1971-06-09) Running ti...

Marchesato di Saluzzo Motto: Noch, noch e Ne pour ce(it.:Ancòra, ancòra e Non sol per questo) Dati amministrativiLingue ufficialiLatino, italiano Lingue parlatepiemontese, provenzale alpino CapitaleSaluzzo Dipendente da Sacro Romano Impero DipendenzeEnclavi di Carmagnola (sede della zecca), Ternavasso, Isolabella e Valfenera, Baldissero, Dogliani, Castiglione Falletto con Serralunga d'Alba e Lequio, Marsaglia, Centallo PoliticaForma di StatoFeudo, Monarchia assoluta ereditaria Forma di gove...

 

2023 film directed by Paul King For the soundtrack, see Wonka (soundtrack). WonkaTheatrical release posterDirected byPaul KingScreenplay by Simon Farnaby Paul King Story byPaul KingBased onCharactersby Roald DahlProduced by David Heyman Alexandra Derbyshire Luke Kelly Starring Timothée Chalamet Calah Lane Keegan-Michael Key Paterson Joseph Matt Lucas Mathew Baynton Sally Hawkins Rowan Atkinson Jim Carter Olivia Colman Hugh Grant CinematographyChung Chung-hoonEdited byMark EversonMusic by Job...