Substructure (mathematics)

In mathematical logic, an (induced) substructure or (induced) subalgebra is a structure whose domain is a subset of that of a bigger structure, and whose functions and relations are restricted to the substructure's domain. Some examples of subalgebras are subgroups, submonoids, subrings, subfields, subalgebras of algebras over a field, or induced subgraphs. Shifting the point of view, the larger structure is called an extension or a superstructure of its substructure.

In model theory, the term "submodel" is often used as a synonym for substructure, especially when the context suggests a theory of which both structures are models.

In the presence of relations (i.e. for structures such as ordered groups or graphs, whose signature is not functional) it may make sense to relax the conditions on a subalgebra so that the relations on a weak substructure (or weak subalgebra) are at most those induced from the bigger structure. Subgraphs are an example where the distinction matters, and the term "subgraph" does indeed refer to weak substructures. Ordered groups, on the other hand, have the special property that every substructure of an ordered group which is itself an ordered group, is an induced substructure.

Definition

Given two structures A and B of the same signature σ, A is said to be a weak substructure of B, or a weak subalgebra of B, if

  • the domain of A is a subset of the domain of B,
  • f A = f B|An for every n-ary function symbol f in σ, and
  • R A R B An for every n-ary relation symbol R in σ.

A is said to be a substructure of B, or a subalgebra of B, if A is a weak subalgebra of B and, moreover,

  • R A = R B An for every n-ary relation symbol R in σ.

If A is a substructure of B, then B is called a superstructure of A or, especially if A is an induced substructure, an extension of A.

Examples

In the language consisting of the binary functions + and ×, binary relation <, and constants 0 and 1, the structure (Q, +, ×, <, 0, 1) is a substructure of (R, +, ×, <, 0, 1). More generally, the substructures of an ordered field (or just a field) are precisely its subfields. Similarly, in the language (×, −1, 1) of groups, the substructures of a group are its subgroups. In the language (×, 1) of monoids, however, the substructures of a group are its submonoids. They need not be groups; and even if they are groups, they need not be subgroups.

Subrings are the substructures of rings, and subalgebras are the substructures of algebras over a field.

In the case of graphs (in the signature consisting of one binary relation), subgraphs, and its weak substructures are precisely its subgraphs.

As subobjects

For every signature σ, induced substructures of σ-structures are the subobjects in the concrete category of σ-structures and strong homomorphisms (and also in the concrete category of σ-structures and σ-embeddings). Weak substructures of σ-structures are the subobjects in the concrete category of σ-structures and homomorphisms in the ordinary sense.

Submodel

In model theory, given a structure M which is a model of a theory T, a submodel of M in a narrower sense is a substructure of M which is also a model of T. For example, if T is the theory of abelian groups in the signature (+, 0), then the submodels of the group of integers (Z, +, 0) are the substructures which are also abelian groups. Thus the natural numbers (N, +, 0) form a substructure of (Z, +, 0) which is not a submodel, while the even numbers (2Z, +, 0) form a submodel.

Other examples:

  1. The algebraic numbers form a submodel of the complex numbers in the theory of algebraically closed fields.
  2. The rational numbers form a submodel of the real numbers in the theory of fields.
  3. Every elementary substructure of a model of a theory T also satisfies T; hence it is a submodel.

In the category of models of a theory and embeddings between them, the submodels of a model are its subobjects.

See also

References

  • Burris, Stanley N.; Sankappanavar, H. P. (1981), A Course in Universal Algebra, Berlin, New York: Springer-Verlag
  • Diestel, Reinhard (2005) [1997], Graph Theory, Graduate Texts in Mathematics, vol. 173 (3rd ed.), Berlin, New York: Springer-Verlag, ISBN 978-3-540-26183-4
  • Hodges, Wilfrid (1997), A shorter model theory, Cambridge: Cambridge University Press, ISBN 978-0-521-58713-6

Read other articles:

Ramzan KhanKebangsaanIndiaNama lainMunna MasterWarga negaraIndiaPekerjaanPenyanyi, pekerja sosial IndiaKarya terkenalShri Shyam Surabhi VandanaKota asalJaunpur, Uttar PradeshAnakFeroze Khan (anak laki-laki)PenghargaanPadma Shri (2020) Ramzan Khan, dikenal sebagai Master Munna, adalah seorang penyanyi dan pekerja sosial India yang menyanyikan Bhajans (lagu kebaktian) dan merawat sapi-sapi.[1][2] Ia berasal dari distrik Jaipur dari Rajasthan. Ia dianugerahi Padma Shri...

 

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2015) ثوران بارذربونجا 2014-2015معلومات عامةمؤشر التفجر البركاني Volcanic explosivity index 0: Hawaiian (en) تعديل - تعديل مصدري - تعديل ويكي بيانات ثورة بركان بارذربونجا في عام 2014 هي ثور...

 

 

Artikel ini bukan mengenai Kaca. Untuk album grup musik God Bless, lihat Cermin (album). Cermin bidang dengan vas bunga Sebuah cermin cembung di sepeda motor Cermin adalah permukaan yang licin dan dapat menciptakan pantulan bayangan benda dengan sempurna. Sejarah Cermin yang dibuat paling awal adalah kepingan batu mengkilap seperti obsidian, sebuah kaca volkanik yang terbentuk secara alami. Cermin obsidian yang ditemukan di Anatolia (kini Turki), berumur sekitar 6000 SM. Cermin batu mengkilap...

Pour l’article ayant un titre homophone, voir Poésy. Manuscrit du poème Les Assis d’Arthur Rimbaud recopié par Paul Verlaine. La poésie est un genre littéraire très ancien, aux formes variées, écrites généralement en vers mais qui admettent aussi la prose, et qui privilégient l'expressivité de la forme, les mots disant plus qu'eux-mêmes par leur choix (sens et sonorités) et leur agencement (rythmes, métrique, figures de style). Sa définition se révèle difficile et varie...

 

 

Voce principale: Eccellenza 2021-2022. Eccellenza Lombardia 2021-2022 Competizione Eccellenza Lombardia Sport Calcio Edizione 31ª Organizzatore F.I.G.C. - L.N.D.Comitato Regionale Lombardia Date dal 19 settembre 2021al 15 maggio 2022 Paese organizz.  Italia Luogo  Lombardia Partecipanti 50 Formula 3 gironi all'italiana con eventuali play-off e play-out Risultati Promozioni VaresinaCastaneseSant'AngeloLumezzane Retrocessioni Base 96 SevesoRhodenseSettimo MilaneseS...

 

 

Jacob Nicolai WilseBorn(1736-01-24)January 24, 1736Lemvig, DenmarkDiedMay 23, 1801(1801-05-23) (aged 66)Eidsberg, NorwayAlma materUniversity of CopenhagenOccupation(s)Priest, meteorologistYears active1768–1801ReligionLutheranismChurchChurch of Norway Jacob Nicolai Wilse (January 24, 1736 – May 23, 1801) was a parish priest in Spydeberg and Eidsberg, Norway.[1][2] He was born in Lemvig, Denmark[3][4] and is known for writing topographic works ...

2016年夏季奥林匹克运动会委内瑞拉代表團委内瑞拉国旗IOC編碼VENNOC委内瑞拉奥林匹克委员会網站covoficial.com.ve(西班牙文)2016年夏季奥林匹克运动会(里約熱內盧)2016年8月5日至8月21日運動員87參賽項目20个大项旗手开幕式:鲁文·利马尔多(击剑)[1]闭幕式:Stefany Hernández(自行车)[2]獎牌榜排名第62[註 1] 金牌 銀牌 銅牌 總計 0 2 1 3 历届奥林匹克运动会�...

 

 

Istana Budaya Istana Budaya didirikan pada bulan September 1999, adalah tempat utama di Malaysia untuk semua jenis teater, termasuk teater musikal, operet, konser klasik dan opera dari pertunjukan lokal dan internasional. Gedung ini terletak di sebelah Galeri Seni Nasional di Jalan Tun Razak di jantung Kuala Lumpur. Pranala luar Wikimedia Commons memiliki media mengenai Istana Budaya. Istana Budaya Official website The history of Istana Budaya Diarsipkan 2007-09-28 di Wayback Machine. Malaysi...

 

 

此條目可能包含不适用或被曲解的引用资料,部分内容的准确性无法被证實。 (2023年1月5日)请协助校核其中的错误以改善这篇条目。详情请参见条目的讨论页。 各国相关 主題列表 索引 国内生产总值 石油储量 国防预算 武装部队(军事) 官方语言 人口統計 人口密度 生育率 出生率 死亡率 自杀率 谋杀率 失业率 储蓄率 识字率 出口额 进口额 煤产量 发电量 监禁率 死刑 国债 ...

1958 film The Notorious Mr. MonksDirected byJoseph KaneWritten byPaul FixRichard C. SarafianProduced byRudy RalstonStarringVera RalstonDon KellyPaul FixCinematographyJack A. MartaEdited byFrederic KnudtsonMusic byJerry RobertsProductioncompanyVentura Pictures CorporationDistributed byRepublic PicturesRelease date February 28, 1958 (1958-02-28) Running time70 minutesCountryUnited StatesLanguageEnglish The Notorious Mr. Monks is a 1958 American drama film directed by Joseph Kane ...

 

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (نوفمبر 2019) دوري جزر فارو الممتاز 1998 تفاصيل الموسم دوري جزر فارو الممتاز  النسخة 57،  و56  البلد جزر فارو  الت...

 

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) غينيا بيساو في الألعاب الأولمبية علم غينيا بيساو رمز ل.أ.د.  GBS ل.أ.و. اللجنة الأولمبية لغينيا بي...

The HonourableEdwin Cameron Hakim Dewan Konstitusional Afrika SelatanPetahanaMulai menjabat 1 Januari 2009Ditunjuk olehPresiden Kgalema MotlantheHakim Supreme Court of AppealMasa jabatanJuli 2000 – 31 Desember 2008Ditunjuk olehPresiden Thabo MbekiPelaksana Jabatan Hakim Dewan Konstitusional Afrika SelatanMasa jabatanAgustus 1999 – Mei 2000Hakim Divisi Lokal WitwatersrandMasa jabatan1 Januari 1995 – Juli 2000Ditunjuk olehPresiden Nelson Mandela Informasi pr...

 

 

American professional wrestling promotion TNA Wrestling redirects here. For the mobile video game based on the promotion, see TNA Wrestling (video game). Impact Wrestling redirects here. For the promotion's flagship television program that once used the same name, see TNA Impact! Anthem Wrestling Exhibitions, LLCTrade nameNWA: Total Nonstop Action (2002–2004) Total Nonstop Action Wrestling (2004–2017, 2024–present) Impact Wrestling (March 2017–June 2017, September 2017–January 2024)...

 

 

Art museum in Piazza di S. Pantaleo , RomaMuseo di RomaPalazzo Braschi, home of the museumClick on the map for a fullscreen viewEstablished1930 (1930)LocationPiazza di S. Pantaleo 10, 00186 Roma 00186Coordinates41°53′50″N 12°28′22″E / 41.8973°N 12.4729°E / 41.8973; 12.4729TypeArt museumWebsitemuseodiroma.it The Museo di Roma is a museum in Rome, Italy, part of the network of Roman civic museums. The museum was founded in the Fascist era with the aim o...

Dak-kkochiJenis Gui kkochi Tempat asal Korea SelatanHidangan nasional terkaitHidangan KoreaSuhu penyajianHangatBahan utamaAyam, daun bawangSunting kotak info • L • BBantuan penggunaan templat ini  Media: Dak-kkochi Nama KoreaHangul닭꼬치 Alih Aksaradak-kkochiMcCune–Reischauertak-kkoch'iIPA[tak̚.k͈o.tɕʰi] Dak-kkochi (Hangul: 닭꼬치; lit. sate ayam) adalah jajanan kaki lima populer di Korea Selatan yang terdiri dari potongan kecil a...

 

 

Questa voce o sezione sull'argomento musicisti statunitensi non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Slide HamptonSlide Hampton a Gerusalemme Jazz Festival Nazionalità Stati Uniti GenereJazz Periodo di attività musicale1950 – 2021 Strumentotrombone Modifica dati su Wikid...

 

 

新宿サブナードSHINJUKU SUBNADE 新宿サブナード (2013年)店舗概要所在地 東京都新宿区歌舞伎町一丁目サブナード1号東京都新宿区新宿三丁目サブナード1号開業日 1973年(昭和48年)9月15日施設所有者 新宿サブナード株式会社施設管理者 新宿サブナード株式会社延床面積 38,344 m²商業施設面積 5,796 m²店舗数 100店駐車台数 400台最寄駅 新宿駅外部リンク 新宿サブ�...

18th/19th-century Spanish poet and statesman In this Spanish name, the first or paternal surname is González and the second or maternal family name is Carvajal. The Most ExcellentTomás José González CarvajalBorn(1753-12-21)21 December 1753Seville, SpainDied9 November 1834(1834-11-09) (aged 80)Madrid, SpainSeat V of the Real Academia EspañolaIn office22 March 1814 – 9 November 1834Preceded byGaspar Melchor de JovellanosSucceeded byJoaquín Ignacio Mencos [...

 

 

Type of commercial fission reactor This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: GE BWR – news · newspapers · books · scholar · JSTOR (January 2014) (Learn how and when to remove this message) GE BWR(General Electric Boiling Water Reactor)GenerationGeneration I (BWR-1)Generation IIGeneration III (ABWR)Gene...