Categorical theory

In mathematical logic, a theory is categorical if it has exactly one model (up to isomorphism).[a] Such a theory can be viewed as defining its model, uniquely characterizing the model's structure.

In first-order logic, only theories with a finite model can be categorical. Higher-order logic contains categorical theories with an infinite model. For example, the second-order Peano axioms are categorical, having a unique model whose domain is the set of natural numbers

In model theory, the notion of a categorical theory is refined with respect to cardinality. A theory is κ-categorical (or categorical in κ) if it has exactly one model of cardinality κ up to isomorphism. Morley's categoricity theorem is a theorem of Michael D. Morley (1965) stating that if a first-order theory in a countable language is categorical in some uncountable cardinality, then it is categorical in all uncountable cardinalities.

Saharon Shelah (1974) extended Morley's theorem to uncountable languages: if the language has cardinality κ and a theory is categorical in some uncountable cardinal greater than or equal to κ then it is categorical in all cardinalities greater than κ.

History and motivation

Oswald Veblen in 1904 defined a theory to be categorical if all of its models are isomorphic. It follows from the definition above and the Löwenheim–Skolem theorem that any first-order theory with a model of infinite cardinality cannot be categorical. One is then immediately led to the more subtle notion of κ-categoricity, which asks: for which cardinals κ is there exactly one model of cardinality κ of the given theory T up to isomorphism? This is a deep question and significant progress was only made in 1954 when Jerzy Łoś noticed that, at least for complete theories T over countable languages with at least one infinite model, he could only find three ways for T to be κ-categorical at some κ:

  • T is totally categorical, i.e. T is κ-categorical for all infinite cardinals κ.
  • T is uncountably categorical, i.e. T is κ-categorical if and only if κ is an uncountable cardinal.
  • T is countably categorical, i.e. T is κ-categorical if and only if κ is a countable cardinal.

In other words, he observed that, in all the cases he could think of, κ-categoricity at any one uncountable cardinal implied κ-categoricity at all other uncountable cardinals. This observation spurred a great amount of research into the 1960s, eventually culminating in Michael Morley's famous result that these are in fact the only possibilities. The theory was subsequently extended and refined by Saharon Shelah in the 1970s and beyond, leading to stability theory and Shelah's more general programme of classification theory.

Examples

There are not many natural examples of theories that are categorical in some uncountable cardinal. The known examples include:

  • Pure identity theory (with no functions, constants, predicates other than "=", or axioms).
  • The classic example is the theory of algebraically closed fields of a given characteristic. Categoricity does not say that all algebraically closed fields of characteristic 0 as large as the complex numbers C are the same as C; it only asserts that they are isomorphic as fields to C. It follows that although the completed p-adic closures Cp are all isomorphic as fields to C, they may (and in fact do) have completely different topological and analytic properties. The theory of algebraically closed fields of a given characteristic is not categorical in ω (the countable infinite cardinal); there are models of transcendence degree 0, 1, 2, ..., ω.
  • Vector spaces over a given countable field. This includes abelian groups of given prime exponent (essentially the same as vector spaces over a finite field) and divisible torsion-free abelian groups (essentially the same as vector spaces over the rationals).
  • The theory of the set of natural numbers with a successor function.

There are also examples of theories that are categorical in ω but not categorical in uncountable cardinals. The simplest example is the theory of an equivalence relation with exactly two equivalence classes, both of which are infinite. Another example is the theory of dense linear orders with no endpoints; Cantor proved that any such countable linear order is isomorphic to the rational numbers: see Cantor's isomorphism theorem.

Properties

Every categorical theory is complete.[1] However, the converse does not hold.[2]

Any theory T categorical in some infinite cardinal κ is very close to being complete. More precisely, the Łoś–Vaught test states that if a satisfiable theory has no finite models and is categorical in some infinite cardinal κ at least equal to the cardinality of its language, then the theory is complete. The reason is that all infinite models are first-order equivalent to some model of cardinal κ by the Löwenheim–Skolem theorem, and so are all equivalent as the theory is categorical in κ. Therefore, the theory is complete as all models are equivalent. The assumption that the theory have no finite models is necessary.[3]

See also

Notes

  1. ^ Some authors define a theory to be categorical if all of its models are isomorphic. This definition makes the inconsistent theory categorical, since it has no models and therefore vacuously meets the criterion.
  1. ^ Monk 1976, p. 349.
  2. ^ Mummert, Carl (2014-09-16). "Difference between completeness and categoricity".
  3. ^ Marker (2002) p. 42

References

Read other articles:

Villafrancacomune(FR) Villefranche-sur-Mer (dettagli) Villafranca – VedutaVeduta di Villafranca, il lungomare visto dall'alto del colle. LocalizzazioneStato Francia Regione Provenza-Alpi-Costa Azzurra Dipartimento Alpi Marittime ArrondissementNizza CantoneBeausoleil AmministrazioneSindacoChristophe Trojani (LR) dal 2014 TerritorioCoordinate43°42′N 7°19′E / 43.7°N 7.316667°E43.7; 7.316667 (Villafranca)Coordinate: 43°42′N 7°19′E...

 

Julia VothVoth di Festival Film Internasional Toronto 2009Lahir16 Mei 1985 (umur 38)[1]Regina, Saskatchewan, Kanada[1][2]PekerjaanAktris, modelTahun aktif2002–kiniSuami/istriDavid ZonshineSitus webjuliavoth.com Julia Voth (lahir 16 Mei 1985) adalah seorang aktris dan model asal Kanada. Ia dikenal karena peran-perannya dalam film tahun 2009 Bitch Slap dan seri TV Package Deal, serta untuk model karakter untuk Jill Valentine dari sejumlah permainan video Res...

 

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...

Mateusz Morawiecki Perdana Menteri Polandia Ke-17Masa jabatan11 Desember 2017 – 13 Desember 2023PresidenAndrzej Duda PendahuluBeata SzydłoPenggantiDonald TuskWakil Perdana Menteri PolandiaMasa jabatan16 November 2015 – 11 Desember 2017PresidenAndrzej DudaPerdana MenteriBeata Szydło PenggantiBeata SzydłoMenteri Keuangan PolandiaMasa jabatan28 September 2016 – 9 Januari 2018Perdana MenteriBeata Szydło PendahuluPaweł SzałamachaPenggantiTeresa CzerwińskaMen...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (يوليو 2016) منتخب إسبانيا تحت 16 سنة لكرة القدممعلومات عامةصنف فرعي من منتخب كرة قدم يُمثِّل رياضياً إسبانيا الاسم الم...

 

Kerajaan Baliᬓ᭄ᬭᬚᬵᬦ᭄ᬩᬮᬶ (Bali)बली राज्य (Sanskerta)914–1908 BenderaLagu kebangsaan: Bali Dwipa jayaWilayah kekuasaan kerajaan bali pada pertengahan abad ke-16 wilayah kekuasaanya mencakup Blambangan(Banyuwangi) hingga Sumbawa bagian baratStatusKerajaanIbu kota Bedulu (Periode Warmadewa) Samprangan (Periode Majapahit) Gelgel (Periode Gelgel) Klungkung (Periode sembilan kerajaan) Bahasa yang umum digunakanBali (Bahasa Utama) Kawi dan Sansekerta (R...

Policy on permits required to enter Laos Politics of Laos Constitution Marxism–Leninism Kaysone Phomvihane Thought People's Revolutionary Party National Congress (11th) Rules Central Committee (11th) General Secretary Thongloun Sisoulith Secretariat (11th) Standing Member Bounthong Chitmany Politburo (11th) Inspection Commission (11th) Chairman Khamphan Phommathat Vice Chairman Vilayvanh Boudakham Defence and Public Security Commission (11th) Chairman Thongloun Sisoulith National Assembly 9...

 

Murder of eleven Italian men by a mob 29°57′47″N 90°4′14″W / 29.96306°N 90.07056°W / 29.96306; -90.07056 1891 New Orleans lynchingsRioters breaking into parish prison, as illustrated in History of the United States (1912, Scribner)LocationNew Orleans, LouisianaDateMarch 14, 1891TargetItalian American suspects of the murder of David HennessyAttack typeXenophobic attack[1]Deaths11PerpetratorsLeaders: William Parkerson, Walter Denegre, James D. Ho...

 

HancockSutradaraPeter BergProduserAkiva GoldsmanJames LassiterMichael MannWill SmithDitulis olehVince GilliganVincent NgoPemeranWill SmithCharlize TheronJason BatemanPenata musikJohn PowellSinematograferTobias A. SchliesslerPenyuntingPaul RubellColby Parker Jr.DistributorColumbia PicturesTanggal rilis2 Juli 2008Durasi93 menitNegaraAmerika SerikatBahasaInggris Channel HBOAnggaran$150 jutaPendapatankotor$380,585,933IMDbInformasi di IMDbAMGProfil All Movie GuideSitus webhttp://sonypictures...

Kathryn Janeway.Laksamana Madya Kathryn Janeway adalah karakter utama dari serial televisi Star Trek: Voyager. Ia diperankan oleh Kate Mulgrew. Janeway, wanita pertama yang menjadi karakter pemimpin di serial Star Trek, adalah seorang kapten pesawat angkasa USS Voyager. Lihat pula Star Trek Romulan Pranala luar An Essay on Janeway as a Feminist Character Diarsipkan 2007-06-26 di Wayback Machine. Artikel bertopik fantasi atau fiksi ini adalah sebuah rintisan. Anda dapat membantu Wikipedia deng...

 

American politician Glenn BaileyBailey in 2022Member of the New Hampshire House of Representativesfrom the Strafford 1st districtIn office2020 – December 7, 2022Member of the New Hampshire House of Representativesfrom the Strafford 2nd districtIncumbentAssumed office December 7, 2022 Personal detailsPolitical partyRepublican[1] Glenn Bailey is an American politician. He serves as a Republican member for the Strafford 2nd district of the New Hamps...

 

Badminton tournament2014 BWF Super SeriesTournament detailsDates7 January – 21 DecemberEdition8th ← 2013 2015 → The 2014 BWF Super Series, officially known as the 2014 Metlife BWF Super Series for sponsorship reasons, was the eighth season of the BWF Super Series. For this season, an annual US$400,000 of player incentive scheme bonus payment shared among the year-end top 10 players/pairs once they fulfil various media and sponsorship commitments.[1] Schedule Below is the schedul...

2006 novel by Ben Elton Chart Throb First edition coverAuthorBen EltonLanguageEnglishGenreComic, Satirical novelPublisherBantam PressPublication date2006Publication placeUnited KingdomMedia typePrint (Hardback & Paperback) & AudioBookPages427 ppISBN978-0-593-05750-6OCLC225348435Preceded byThe First Casualty (2005) Followed byBlind Faith (2007)  Chart Throb is a 2006 novel by Ben Elton. It was released in hardback on 6 November 2006 in the UK, and 9 January 200...

 

Artikel ini memerlukan pemutakhiran informasi. Harap perbarui artikel dengan menambahkan informasi terbaru yang tersedia. ChelseaPemain Chelsea di Liga Champions saat menghadapi QarabagMusim 2017–18PemilikRoman AbramovichKetuaBruce BuckManajerAntonio ConteStadionStamford BridgeLiga Primer InggrisPeringkat 5FA CupJuaraPiala EFLSemifinalCommunity Shield FARunner-upLiga Champions UEFA16 besarPencetak gol terbanyakLiga: Eden Hazard (12)Seluruh kompetisi: Eden Hazard (17)Jumlah penonton kandang ...

 

Kamen Rider BladePembuatShotaro IshinomoriPemeranTakayuki TsubakiKosei AmanoRyoji MorimotoTakahiro HojoYumi EgawaTerunosuke TakezaiKaori YamaguchiHikari KajiwaraArisa MiyazawaKazuhiro YamajiUrara AwataNozomu MasuzawaJun'ichi HarutaKoji MoritsuguYasukaze MotomiyaMika HijiiYasufumi HayashiKairi NaritaKazunari AizawaMasashi KagamiMio FukuzumiMakoto KamijoAkane HamasakiAkira KuboderaFumihiko Tachiki (Suara)NaratorJurota KosugiPenggubah lagu temaKatsuya YoshidaMiki FushisueCheru WatanabeYukari Ao...

Radio station in Winnipeg, Manitoba CJKR-FMWinnipeg, ManitobaBroadcast areaWinnipeg Metropolitan RegionFrequency97.5 MHz (FM)BrandingPower 97ProgrammingFormatActive rockAffiliationsWinnipeg JetsOwnershipOwnerCorus Entertainment(Corus Premium Television Ltd.)Sister stationsCJOB, CFPG-FM, CKND-DTHistoryFirst air dateMay 27, 1948Former call signsCJOB-FM (1948–1976)CHMM-FM (1976–1984)CKIS-FM (1984–1991)Technical informationLicensing authorityCRTCClassCERP310,000 wattsHAAT69.5 meters (228...

 

Dewan Perwakilan Rakyat Daerah Kota PalembangDewan Perwakilan RakyatKota Palembang2019-2024JenisJenisUnikameral SejarahSesi baru dimulai30 September 2019PimpinanKetuaZainal Abidin (Demokrat) sejak 8 Oktober 2019 Wakil Ketua IAdzanu Getar Nusantara, S.H. (Gerindra) sejak 21 Maret 2022 Wakil Ketua IIRaden Muhammad Yusuf Indra Kesuma (PDI-P) sejak 21 Juni 2022 Wakil Ketua IIIDauli, S.T. (PAN) sejak 18 Juli 2022 KomposisiAnggota50Partai & kursiPemerintah (36)   Gerin...

 

George Washington USA:s 1:e president Tid i befattningen30 april 1789–4 mars 1797 Vicepresident John Adams Företrädare Ingen Efterträdare John Adams Senior Officer of the Army Tid i befattningen13 juli 1798–14 december 1799 Företrädare James Wilkinson Efterträdare Alexander Hamilton Kontinentalarméns överbefälhavare Tid i befattningen15 juni 1775–23 december 1783 Företrädare Ingen Efterträdare Henry Knox (Senior Officer of the Army) Delegat till Andra kontinenta...

430 siege This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Siege of Hippo Regius – news · newspapers · books · scholar · JSTOR (November 2019) Siege of Hippo RegiusPart of the Vandalic conquest of AfricaFall of the Roman Empireand Roman–Germanic WarsRuins of Hippo RegiusDateJune 430 – August 431...

 

Serie A 2021-2022Serie A UnipolSai 2021-2022Dettagli della competizioneSport Pallacanestro Edizione100ª OrganizzatoreLega Basket Federazione FIP Periodo25 settembre 2021 —18 giugno 2022 Squadre16 VerdettiCampione Olimpia Milano(29º titolo) Retrocessioni Fortitudo Bologna  Vanoli Cremona MVP Amedeo Della Valle Miglior allenatore Alessandro Magro Miglior marcatore Marcus Keene (18.7) MVP delle finali Shavon Shields Cronologia della competizioneed. successiva → ...