Domain of discourse

A symbol for the set of domain of discourse

In the formal sciences, the domain of discourse, also called the universe of discourse, universal set, or simply universe, is the set of entities over which certain variables of interest in some formal treatment may range.

Overview

Giuseppe Peano

The domain of discourse is usually identified in the preliminaries, so that there is no need in the further treatment to specify each time the range of the relevant variables.[1] Many logicians distinguish, sometimes only tacitly, between the domain of a science and the universe of discourse of a formalization of the science.[2]

Examples

For example, in an interpretation of first-order logic, the domain of discourse is the set of individuals over which the quantifiers range. A proposition such as x (x2 ≠ 2) is ambiguous if no domain of discourse has been identified. In one interpretation, the domain of discourse could be the set of real numbers; in another interpretation, it could be the set of natural numbers. If the domain of discourse is the set of real numbers, the proposition is false, with x = 2 as counterexample; if the domain is the set of natural numbers, the proposition is true, since 2 is not the square of any natural number.

Universe of discourse

The term "universe of discourse" generally refers to the collection of objects being discussed in a specific discourse. In model-theoretical semantics, a universe of discourse is the set of entities that a model is based on. The concept universe of discourse was used for the first time by George Boole (1854) on page 42 of his Laws of Thought. Boole's definition is quoted below. The concept, probably discovered independently by Boole in 1847, played a crucial role in his philosophy of logic especially in his principle of wholistic reference.

Alfred North Whitehead cited Augustus De Morgan as identifying "that limited class of things which is the special subject of discourse on any particular occasion. Such a class was called by De Morgan, the Universe of Discourse."[3]

Lewis Carroll expressed the need for a universe of discourse as follows:

It sometimes happens that, in one or both of the Terms of a Proposition, the Name consists of Adjectives only, the Substantive being understood. In order to express such a Proposition fully, we must supply the Name of some Class which may be regarded as a Genus of which each Term is a Species...The Genus referred to is called the Universe of Discourse...[4]

Boole’s 1854 definition

George Boole

In every discourse, whether of the mind conversing with its own thoughts, or of the individual in his folley with others, there is an assumed or expressed limit within which the subjects of its operation are confined. The most unfettered discourse is that in which the words we use are understood in the widest possible application, and for them the limits of discourse are co-extensive with those of the universe itself. But more usually we confine ourselves to a less spacious field. Sometimes, in discoursing of men we imply (without expressing the limitation) that it is of men only under certain circumstances and conditions that we speak, as of civilized men, or of men in the vigour of life, or of men under some other condition or relation. Now, whatever may be the extent of the field within which all the objects of our discourse are found, that field may properly be termed the universe of discourse. Furthermore, this universe of discourse is in the strictest sense the ultimate subject of the discourse.

— George Boole, The Laws of Thought. 1854/2003. p. 42.[5]

Illustration

The binary relation called set membership, expressed as , and meaning that x belongs to set A, is clear enough. Every binary relation has a converse relation, and the converse of . Also, a binary relation must have a domain. The domain of the converse of set membership is the universe of discourse. Any subset of this universe may, or may not, contain x. A is a subset of this universe, not necessarily restricted to A.

See also

References

  1. ^ Corcoran, John. Universe of discourse. Cambridge Dictionary of Philosophy, Cambridge University Press, 1995, p. 941.
  2. ^ José Miguel Sagüillo, Domains of sciences, universe of discourse, and omega arguments, History and philosophy of logic, vol. 20 (1999), pp. 267–280.
  3. ^ Alfred North Whitehead (1898) A Treatise on Universal Algebra with Applications, page 100 via Internet Archive
  4. ^ Lewis Carroll (1896) Symbolic Logic, Part I: Elementary page 10
  5. ^ Facsimile of 1854 edition, with an introduction by J. Corcoran. Buffalo: Prometheus Books (2003). Reviewed by James van Evra in Philosophy in Review 24 (2004): 167–169.

Read other articles:

2001 greatest hits album by Jay TeeThe Knocks 1992–2000Greatest hits album by Jay TeeReleasedFebruary 13, 2001Recorded1992-2000 Alleyway Studios (Vallejo, CA) Batchelor's Pad (Corona, CA) The Grill (Oakland, CA) K-Lou Studios (Richmond, CA) Pound 4 Pound (Delano, CA) Rated Z Studios (Vallejo, CA)GenreWest Coast hip hop, gangsta rapLength72:35Label40 Ounce RecordsProducerDave Fore, Jay Tee (exec.), Johnny Z, Ken Franklin, Lev Berlak, Philly Blunt, Terrance RichardsonJay Tee chronolog...

 

Administrative entry restrictions Romanian passport A Romanian identity card is valid for travel to most European countries Visa requirements for Romanian citizens are the administrative entry restrictions by the authorities of other territories affecting citizens of Romania. As of January 2024, Romanian citizens had visa-free or visa on arrival access to 179 countries and territories, ranking the Romanian passport 13th in terms of travel freedom (tied with the passport of Bulgaria), accordin...

 

Peta yang menunjukkan letak Kraljevo di Serbia. Kraljevo (Kiril Serbia: Краљево) ialah sebuah kota dan kotamadya di Serbia bagian barat. Wilayah kotamadya berpenduduk 121.707 jiwa (2002) dan wilayah kota berpenduduk 82.846 jiwa (2002). Wilayah kotamadyanya mencapai 1.530 km² Kota ini adalah ibu kota administratif Distrik Raška. Kraljevo terletak di Sungai Ibar. Kota kembar Sainte-Foy-les-Lyon, Prancis Sendenhorst, Jerman Ahlen, Jerman Gruenberg in Schlesien, Polandia Artikel ber...

Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Lexar – berita · surat kabar · buku · cendekiawan · JSTOR (November 2013) LexarJenisAnak perusahaanIndustriPenyimpanan dataDidirikan1996; 28 tahun lalu (1996)PendiriJohn Reimer, Mike Liccardo, Paul Wenz,...

 

Pak Song-chol Informasi pribadiTanggal lahir 24 September 1987 (umur 36)Tempat lahir Pyongyang, Korea UtaraTinggi 1,70 m (5 ft 7 in)Posisi bermain Gelandang SerangKarier senior*Tahun Tim Tampil (Gol)2007–2018 Rimyongsu 2018–2020 Visakha FC 9 (1)Tim nasional‡2007 Korea Utara U-20 3 (0)2007–2017 Korea Utara 55 (12) * Penampilan dan gol di klub senior hanya dihitung dari liga domestik dan akurat per 8 September 2020‡ Penampilan dan gol di tim nasional akurat p...

 

Species of carnivore Javan ferret-badger Conservation status Least Concern  (IUCN 3.1)[1] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Mammalia Order: Carnivora Family: Mustelidae Genus: Melogale Species: M. orientalis Binomial name Melogale orientalisBlanford, 1888 Javan ferret-badger range Synonyms Melogale personata ssp. orientalis Blanford, 1888 The Javan ferret-badger (Melogale orientalis) is a mustelid endemic to Java and Bali, ...

City in Ontario, CanadaElliot LakeCity (single-tier)City of Elliot LakeThe city of Elliot Lake; the lake on the rightElliot LakeLocation in OntarioCoordinates: 46°23′N 82°39′W / 46.383°N 82.650°W / 46.383; -82.650CountryCanadaProvinceOntarioDistrictAlgomaEstablished1955Government • MayorAndrew Wannan • Governing BodyElliot Lake City Council • Federal electoral districtAlgoma—Manitoulin—Kapuskasing • Provincial...

 

English indie rock band For other uses, see The Rifles and The Rifles (novel). The RiflesThe Rifles in concert in Doornroosje, Nijmegen, NetherlandsBackground informationOriginChingford, EnglandGenresIndie rockYears active2004–presentLabelsCooking VinylSixsevenineUniversal PublishingMembersJoel StokerLucas CrowtherRobert PyneGrant MarshDean MumfordPast membersLee BurgessKenton ShinnWebsitetherifles.com The Rifles are an English indie rock band from Chingford, London. Their debut album No Lo...

 

Canon Medical Systems CorporationNama asliキヤノンメディカルシステムズ株式会社Nama latinKyanon Medikaru Shisutemuzu Kabushiki-gaishaSebelumnyaNippon Medical Electric Co., Ltd. (1948-1954)Toshiba Medical Electric Co., Ltd. (1954-1957)Toshiba Radiation Co., Ltd. (1957-1972)Toshiba Medical Co., Ltd. (1972-2003)Toshiba Medical Systems Corporation (2003-2018)JenisAnak perusahaanIndustriPeralatan listrikDidirikan23 September 1948Kantorpusat1385 Shimoishigami, Otawara, Tochigi, Jep...

ГородЛебедянь Флаг Герб 53°00′41″ с. ш. 39°07′41″ в. д.HGЯO Страна  Россия Субъект Федерации Липецкая область Муниципальный район Лебедянский Городское поселение город Лебедянь Глава Ченцов Роман Иванович История и география Основан 1605 год Первое упоминание 1605 �...

 

Islamic religious trust for the Al-Aqsa Mosque The Al-Aqsa area in East Jerusalem, with the golden Dome of the Rock The Jerusalem Waqf and Al-Aqsa Mosque Affairs Department, also known as the Jerusalem Waqf, the Jordanian Waqf[1] or simply the Waqf, is the Jordanian-appointed organization responsible for controlling and managing the current Islamic edifices on the Al-Aqsa mosque compound in the Old City of Jerusalem, known to Jews as the Temple Mount, which includes the Dome of the Ro...

 

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

Chief minister of Travancore-Cochin A. J. John3rd Chief Minister of Travancore-CochinIn office12 March 1952 – 16 March 1954Preceded byC. KesavanSucceeded byPattom A. Thanu PillaiConstituencyPoonjarGovernor of Madras StateIn office1956–1957Appointed byRajendra PrasadFirst MinisterK. KamarajSucceeded byBhishnuram MedhiPreceded bySri Prakasa Personal detailsBorn(1893-07-18)18 July 1893Thalayolaparambu, Travancore, British IndiaDied1 October 1957(1957-10-01) (aged 64)Madras, Mad...

 

Bernard Germain de LacépèdeBernard Germain de Lacépède(portrait by Jean-Baptiste Paulin Guérin, 1842)Lahir(1756-12-26)26 Desember 1756Agen di GuienneMeninggal6 Oktober 1825(1825-10-06) (umur 68)Épinay-sur-SeineKebangsaanPrancisDikenal atasContinuing Buffon's Histoire NaturellePenghargaan Grand-Croix of the Legion of Honor (1805)Karier ilmiahBidangSejarah alam Bernard-Germain-Étienne de La Ville-sur-Illon, comte de Lacépède (26 Desember 1756 – 6 Oktober 1825) ada...

 

لجان المقاومة الشعبية لجان المقاومة الشعبية‌ البلد دولة فلسطين  تاريخ التأسيس 2000  الموقع الرسمي الموقع الرسمي  تعديل مصدري - تعديل   لجان المقاومة الشعبية هو تنظيم فلسطيني نشأ وظهر مع انتفاضة الأقصى التي بدأت في 28 سبتمبر 2000 م. قامت بالعديد من العمليات العسكرية ع�...

Largest island in British Columbia, Canada Quadra and Vancouver Island redirects here. For the nearby island named solely after the Spanish explorer, see Quadra Island. Not to be confused with the city of Vancouver, located on the mainland. Vancouver IslandTerra satellite image of Vancouver Island, 2003Vancouver Island with major cities and towns labelledGeographyLocationNorth Pacific Ocean, on the coast of southern British ColumbiaCoordinates49°36′N 125°30′W / 49.6°N 1...

 

Questa voce o sezione sugli argomenti politici birmani e militari non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Bo Ne Win Presidente del Partito del Programma Socialista della BirmaniaDurata mandato4 luglio 1962 –23 luglio 1988 Predecessorecarica istituita SuccessoreSein Lwin Presidente ...

 

Group in which the order of every element is a power of p Not to be confused with n-group (category theory). Algebraic structure → Group theoryGroup theory Basic notions Subgroup Normal subgroup Quotient group (Semi-)direct product Group homomorphisms kernel image direct sum wreath product simple finite infinite continuous multiplicative additive cyclic abelian dihedral nilpotent solvable action Glossary of group theory List of group theory topics Finite groups Cyclic group Zn Symmetric gro...

Iraqi footballer and coach Mejbil Fartous Personal informationFull name Mejbil Fartous DiabDate of birth (1950-07-06) 6 July 1950 (age 74)Place of birth Erbil, IraqPosition(s) DefenderTeam informationCurrent team Al-Quwa Al-Jawiya (Technical Advisor.)Youth career0000–1967 Al-Quwa Al-JawiyaSenior career*Years Team Apps (Gls)1967−1978 Al-Quwa Al-Jawiya International career1967 Iraq U20 1967−1973 Iraq U23 12 (0)1967−1977 Iraq 72 (1)Managerial career1978–1979 Al-Quwa Al-Jawiya1983 ...

 

For other people named John Aird, see John Aird (disambiguation). British politician John AirdAird in his late yearsBorn(1833-12-03)3 December 1833Died6 January 1911(1911-01-06) (aged 77)NationalityEnglish Sir John Aird, 1st Baronet (3 December 1833 – 6 January 1911) was an English civil engineering contractor of the late 19th and early 20th centuries. He also served as Conservative Member of Parliament (MP) for Paddington North from 1887 to 1906, was the first Mayor of Paddington in 1...