In humans, the CCR5 gene that encodes the CCR5 protein is located on the short (p) arm at position 21 on chromosome 3. Certain populations have inherited the Delta 32 mutation, resulting in the genetic deletion of a portion of the CCR5 gene. Homozygous carriers of this mutation are resistant to infection by macrophage-tropic (M-tropic) strains of HIV-1.[6][7][8][9][10][11]
CCR5 is predominantly expressed on T cells, macrophages, dendritic cells, eosinophils, microglia and a subpopulation of either breast or prostate cancer cells.[18][19] The expression of CCR5 is selectively induced during the cancer transformation process and is not expressed in normal breast or prostate epithelial cells. Approximately 50% of human breast cancer expressed CCR5, primarily in triple negative breast cancer.[18] CCR5 inhibitors blocked the migration and metastasis of breast and prostate cancer cells that expressed CCR5, suggesting that CCR5 may function as a new therapeutic target.[18][19][20] Recent studies suggest that CCR5 is expressed in a subset of cancer cells with characteristics of cancer stem cells, which are known to drive therapy resistance, and that CCR5 inhibitors enhanced the number of cells killed by current chemotherapy.[21] It is likely that CCR5 plays a role in inflammatory responses to infection, though its exact role in normal immune function is unclear. Regions of this protein are also crucial for chemokine ligand binding, the functional response of the receptor, and HIV co-receptor activity.[22]
Modulation of CCR5 activity contributes to a non-pathogenic course of infection with simian immunodeficiency virus (SIV) in several African non-human primate species that are long-term natural hosts of SIV and avoid immunodeficiency upon the infection.[23] These regulatory mechanisms include: genetic deletions that abrogate cell surface expression of CCR5,[24] downregulation of CCR5 on the surface of CD4+ T cells, in particular on memory cells,[25] and delayed onset of CCR5 expression on the CD4+ T cells during development.[26][27]
HIV-1 most commonly uses the chemokine receptors CCR5 and/or CXCR4 as co-receptors to enter target immunological cells.[28] These receptors are located on the surface of host immune cells whereby they provide a method of entry for the HIV-1 virus to infect the cell.[29] The HIV-1 envelope glycoprotein structure is essential in enabling the viral entry of HIV-1 into a target host cell.[29] The envelope glycoprotein structure consists of two protein subunits cleaved from a Gp160 protein precursor encoded for by the HIV-1 env gene: the Gp120 external subunit and the Gp41 transmembrane subunit.[29] This envelope glycoprotein structure is arranged into a spike-like structure located on the surface of the virion and consists of a trimer of Gp120-Gp41 hetero-dimers.[29] The Gp120 envelope protein is a chemokine mimic.[28] Though it lacks the unique structure of a chemokine, it is still capable of binding to the CCR5 and CXCR4 chemokine receptors.[28] During HIV-1 infection, the Gp120 envelope glycoprotein subunit binds to a CD4 glycoprotein and a HIV-1 co-receptor expressed on a target cell, forming a heterotrimeric complex.[28] The formation of this complex stimulates the release of a fusogenic peptide, causing the viral membrane to fuse with the membrane of the target host cell.[28] Because binding to CD4 alone can sometimes result in gp120 shedding, gp120 must next bind to co-receptor CCR5 in order for fusion to proceed. The tyrosine-sulfated amino terminus of this co-receptor is the "essential determinant" of binding to the gp120 glycoprotein.[30] The co-receptor also recognizes the V1-V2 region of gp120 and the bridging sheet (an antiparallel, 4-stranded β sheet that connects the inner and outer domains of gp120). The V1-V2 stem can influence "co-receptor usage through its peptide composition as well as by the degree of N-linked glycosylation." Unlike V1-V2 however, the V3 loop is highly variable and thus is the most important determinant of co-receptor specificity.[30] The normal ligands for this receptor, RANTES, MIP-1β, and MIP-1α, are able to suppress HIV-1 infection in vitro[31]. In individuals infected with HIV, CCR5-using viruses are the predominant species isolated during the early stages of viral infection,[32] suggesting that these viruses may have a selective advantage during transmission or the acute phase of disease. Moreover, at least half of all infected individuals harbor only CCR5-using viruses throughout the course of infection.
CCR5 is the primary co-receptor used by gp120 sequentially with CD4. This bind results in gp41, the other protein product of gp160, released from its metastable conformation and inserted into the membrane of the host cell. Although it has not been confirmed, binding of gp120-CCR5 involves two crucial steps: 1) The tyrosine-sulfated amino terminus of this co-receptor is an "essential determinant" of binding to gp120 (as stated previously) 2) Following step 1., there must be reciprocal action (synergy, intercommunication) between gp120 and the CCR5 transmembrane domains.[30]
CCR5 is essential for the spread of the R5-strain of the HIV-1 virus.[33] Knowledge of the mechanism by which this strain of HIV-1 mediates infection has prompted research into the development of therapeutic interventions to block CCR5 function.[34] A number of new experimental HIV drugs, called CCR5 receptor antagonists, have been designed to interfere with binding between the Gp120 envelope protein and the HIV co-receptor CCR5.[33] These experimental drugs include PRO140 (CytoDyn), Vicriviroc (Phase III trials were cancelled in July 2010) (Schering Plough), Aplaviroc (GW-873140) (GlaxoSmithKline) and Maraviroc (UK-427857) (Pfizer). Maraviroc was approved for use by the FDA in August 2007.[33] It is the only one thus far approved by the FDA for clinical use, thus becoming the first CCR5 inhibitor.[30] A problem of this approach is that, while CCR5 is the major co-receptor by which HIV infects cells, it is not the only such co-receptor. It is possible that under selective pressure HIV will evolve to use another co-receptor. However, examination of viral resistance to AD101, molecular antagonist of CCR5, indicated that resistant viruses did not switch to another co-receptor (CXCR4), but persisted in using CCR5: they either bound to alternative domains of CCR5 or to the receptor at a higher affinity. However, because there is still another co-receptor available, it is probable that lacking the CCR5 gene does not make one immune to the virus; it would simply be more challenging for the individual to contract it. Also, the virus still has access to CD4. Unlike CCR5, which is not required (as evidenced by those living healthy lives even when lacking the gene as a result of the delta32 mutation), CD4 is critical in the body's immune defense system.[35] Even without the availability of either co-receptor (even CCR5), the virus can still invade cells if gp41 were to go through an alteration (including its cytoplasmic tail) that resulted in the independence of CD4 without the need of CCR5 and/or CXCR4 as a doorway.[36]
Cancer
Expression of CCR5 is induced in breast and prostate epithelial cells upon transformation.[18][19] The induction of CCR5 expression promotes cellular invasion, migration, and metastasis.[5][18][21] The induction of metastasis involves homing to the metastatic site. CCR5 inhibitors including maraviroc and leronlimab have been shown to block lung metastasis of human breast cancer cell lines.[18][37] In preclinical studies of immune competent mice CCR5 inhibitors blocked metastasis to the bones and brain.[19] CCR5 inhibitors also reduce the infiltration of tumor associated macrophages.[38] A Phase 1 clinical study of a CCR5 inhibitor in heavily pretreated patients with metastatic colon cancer demonstrated an objective clinical response and reduction in metastatic tumor burden.[39]
Brain
Increased levels of CCR5 are part of the inflammatory response to stroke and death. Blocking CCR5 with Maraviroc (a drug approved for HIV) may enhance recovery after stroke.[40][41]
In the developing brain, chemokine receptors such as CCR5 influence neuronal migration and connection. After stroke, they seem to decrease the number of connection sites on neurons near the damage.[40]
CCR5-Δ32 (or CCR5-D32 or CCR5 delta 32) is an allele of CCR5.[42][43]
CCR5 Δ32 is a 32-base-pair deletion that introduces a premature stop codon into the CCR5 receptor locus, resulting in a nonfunctional receptor.[44][45] CCR5 is required for M-tropic HIV-1 virus entry.[46] Individuals homozygous (denoted Δ32/Δ32) for CCR5 Δ32 do not express functional CCR5 receptors on their cell surfaces and are resistant to HIV-1 infection, despite multiple high-risk exposures.[46] Individuals heterozygous (+/Δ32) for the mutant allele have a greater than 50% reduction in functional CCR5 receptors on their cell surfaces due to dimerization between mutant and wild-type receptors that interferes with transport of CCR5 to the cell surface.[47] Heterozygote carriers are resistant to HIV-1 infection relative to wild types and when infected, heterozygotes exhibit reduced viral loads and a 2-3-year-slower progression to AIDS relative to wild types.[44][46][48] Heterozygosity for this mutant allele also has shown to improve one's virological response to anti-retroviral treatment.[49] CCR5 Δ32 has a heterozygote frequency of 9% in Europe, and a homozygote frequency of 1%.[50]
Recent research indicates that CCR5 Δ32 enhances cognition and memory. In 2016, researchers showed that removing the CCR5 gene from mice significantly improved their memory.[51] CCR5 is a powerful suppressor for neuronal plasticity, learning, and memory; CCR5 over-activation by viral proteins may contribute to HIV-associated cognitive deficits.[52]
Evolutionary history and age of the allele
The CCR5 Δ32 allele is notable for its recent origin, unexpectedly high frequency, and distinct geographic distribution,[53] which together suggest that (a) it arose from a single mutation, and (b) it was historically subject to positive selection.
Two studies have used linkage analysis to estimate the age of the CCR5 Δ32 deletion, assuming that the amount of recombination and mutation observed on genomic regions surrounding the CCR5 Δ32 deletion would be proportional to the age of the deletion.[43][54] Using a sample of 4000 individuals from 38 ethnic populations, Stephens et al. estimated that the CCR5-Δ32 deletion occurred 700 years ago (275–1875, 95% confidence interval). Another group, Libert et al. (1998), used microsatellite mutations to estimate the age of the CCR5 Δ32 mutation to be 2100 years (700–4800, 95% confidence interval). On the basis of observed recombination events, they estimated the age of the mutation to be 2250 years (900–4700, 95% confidence interval).[54] A third hypothesis relies on the north-to-south gradient of allele frequency in Europe, which shows that the highest allele frequency occurred in the Nordic countries and lowest allele frequency in southern Europe. Because the Vikings historically occupied these countries, it may be possible that the allele spread throughout Europe due to the Viking dispersal in the 8th to 10th centuries.[55] Vikings were later replaced by the Varangians in Russia, which may have contributed to the observed east-to-west cline of allele frequency.[53][55]
HIV-1 was initially transmitted from chimpanzees (Pan troglodytes) to humans in the early 1900s in Southeast Cameroon, Africa,[56] through exposure to infected blood and body fluids while butchering bushmeat.[57] However, HIV-1 was effectively absent from Europe until the 1980s.[58] Therefore, given the average age of roughly 1000 years for the CCR5-Δ32 allele, it can be established that HIV-1 did not exert selection pressure on the human population for long enough to achieve the current frequencies.[53] Hence, other pathogens have been suggested as agents of positive selection for CCR5 Δ32, including bubonic plague (Yersinia pestis) and smallpox (Variolamajor).
Other data suggest that the allele frequency experienced negative selection pressure as a result of pathogens that became more widespread during Roman expansion.[59] The idea that negative selection played a role in the allele's low frequency is also supported by experiments using knockout mice and Influenza A, which demonstrated that the presence of the CCR5 receptor is important for efficient response to a pathogen.[60][61]
Evidence for a single mutation
Several lines of evidence suggest that the CCR5 Δ32 allele evolved only once.[53] First, CCR5 Δ32 has a relatively high frequency in several different European populations but is comparatively absent in Asian, Middle Eastern and American Indian populations,[43] suggesting that a single mutation occurred after divergence of Europeans from their African ancestor.[43][44][62] Second, genetic linkage analysis indicates that the mutation occurs on a homogeneous genetic background, implying that inheritance of the mutation occurred from a common ancestor.[54] This was demonstrated by showing that the CCR5 Δ32 allele is in strong linkage disequilibrium with highly polymorphic microsatellites. More than 95% of CCR5 Δ32 chromosomes also carried the IRI3.1-0 allele, while 88% carried the IRI3.2 allele. By contrast, the microsatellite markers IRI3.1-0 and IRI3.2-0 were found in only 2 or 1.5% of chromosomes carrying a wild-type CCR5 allele.[54] This evidence of linkage disequilibrium supports the hypothesis that most, if not all, CCR5 Δ32 alleles arose from a single mutational event. Finally, the CCR5 Δ32 allele has a unique geographical distribution indicating a single Northern origin followed by migration. A study measuring allele frequencies in 18 European populations found a North-to-South gradient, with the highest allele frequencies in Finnish and Mordvinian populations (16%), and the lowest in Sardinia (4%).[54]
Positive selection
In the absence of selection, a single mutation would take an estimated 127,500 years to rise to a population frequency of 10%.[43] Estimates based on genetic recombination and mutation rates place the age of the allele between 1000 and 2000 years. This discrepancy is a signature of positive selection.
It is estimated that HIV-1 entered the human population in Africa in the early 1900s,[56] but symptomatic infections were not reported until the 1980s. The HIV-1 epidemic is therefore far too young to be the source of positive selection that drove the frequency of CCR5 Δ32 from zero to 10% in 2000 years.
Protection from bubonic plague. Stephens, et al. (1998), suggest that bubonic plague (Yersinia pestis) had exerted positive selective pressure on CCR5 Δ32.[43] This hypothesis was based on the timing and severity of the Black Death pandemic, which killed 30% of the European population of all ages between 1346 and 1352.[63] After the Black Death, there were less severe, intermittent epidemics. Individual cities experienced high mortality, but overall mortality in Europe was only a few percent.[63][64][65] In 1655-1656 a second pandemic called the "Great Plague" killed 15-20% of London's population.[66][67][dubious – discuss] Importantly, the plague epidemics were intermittent. Bubonic plague is a zoonotic disease, primarily infecting rodents, spread by fleas, and only occasionally infecting humans.[68] Human-to-human infection of bubonic plague does not occur, though it can occur in pneumonic plague, which infects the lungs.[69] Only when the density of rodents is low are infected fleas forced to feed on alternative hosts such as humans, and under these circumstances a human epidemic may occur.[68] Based on population genetic models, Galvani and Slatkin (2003) argue that the intermittent nature of plague epidemics did not generate a sufficiently strong selective force to drive the allele frequency of CCR5 Δ32 to 10% in Europe.[42] To test this hypothesis, Galvani and Slatkin (2003) modeled the historical selection pressures produced by plague and smallpox.[42]
Protection from smallpox. Plague was modeled according to historical accounts,[70][71] while age-specific smallpox mortality was gleaned from the age distribution of smallpox burials in York (England) between 1770 and 1812.[64] Smallpox preferentially infects young, pre-reproductive members of the population since they are the only individuals who are not immunized or dead from past infection. Because smallpox preferentially kills pre-reproductive members of a population, it generates stronger selective pressure than plague.[42] Unlike plague, smallpox does not have an animal reservoir and is only transmitted from human to human.[72][73] The authors calculated that if plague were selecting for CCR5 Δ32, the frequency of the allele would still be less than 1%, while smallpox has exerted a selective force sufficient to reach 10%.
The hypothesis that smallpox exerted positive selection for CCR5 Δ32 is also biologically plausible, since poxviruses, like HIV, enter white blood cells using chemokine receptors.[74] By contrast, Yersinia pestis is a bacterium with a very different biology.
Although Europeans are the only group to have subpopulations with a high frequency of CCR5 Δ32, they are not the only population that has been subject to selection by smallpox, which had a worldwide distribution before it was declared eradicated in 1980. The earliest unmistakable descriptions of smallpox appear in the 5th century A.D. in China, the 7th century A.D. in India and the Mediterranean, and the 10th century A.D. in southwestern Asia.[73] By contrast, the CCR5 Δ32 mutation is found only in European, West Asian, and North African populations.[75] The anomalously high frequency of CCR5 Δ32 in these populations appears to require both a unique origin in Northern Europe and subsequent selection by smallpox.
Potential costs
CCR5 Δ32 can be beneficial to the host in some infections (e.g., HIV-1, possibly smallpox), but detrimental in others (e.g., tick-borne encephalitis, West Nile virus). Whether CCR5 function is helpful or harmful in the context of a given infection depends on a complex interplay between the immune system and the pathogen.[76]
In general, research suggests that the CCR5 Δ32 mutation may play a deleterious role in post-infection inflammatory processes, which can injure tissue and create further pathology.[77] The best evidence for this proposed antagonistic pleiotropy is found in flavivirus infections. In general many viral infections are asymptomatic or produce only mild symptoms in the vast majority of the population. However, certain unlucky individuals experience a particularly destructive clinical course, which is otherwise unexplained but appears to be genetically mediated. Patients homozygous for CCR5 Δ32 were found to be at higher risk for a neuroinvasive form of tick-borne encephalitis (caused by a flavivirus).[78] In addition, functional CCR5 may be required to prevent symptomatic disease after infection with West Nile virus, another flavivirus; CCR5 Δ32 was associated with early symptom development and more pronounced clinical manifestations after infection with West Nile virus.[79]
This finding in humans confirmed a previously observed experiment in an animal model of CCR5 Δ32 homozygosity. After infection with West Nile virus, CCR5 Δ32 mice had markedly increased viral titers in the central nervous system and had increased mortality[80] compared with that of wild-type mice, thus suggesting that CCR5 expression was necessary to mount a strong host defense against West Nile virus.
Medical applications
A genetic approach involving intrabodies that block CCR5 expression has been proposed as a treatment for HIV-1 infected individuals.[81] When T-cells modified so they no longer express CCR5 were mixed with unmodified T-cells expressing CCR5 and then challenged by infection with HIV-1, the modified T-cells that do not express CCR5 eventually take over the culture, as HIV-1 kills the non-modified T-cells. This same method might be used in vivo to establish a virus-resistant cell pool in infected individuals.[81]
This hypothesis was tested in an AIDS patient who had also developed myeloid leukemia, and was treated with chemotherapy to suppress the cancer. A bone marrow transplant containing stem cells from a matched donor was then used to restore the immune system. However, the transplant was performed from a donor with 2 copies of CCR5-Δ32 mutation gene. After 600 days, the patient was healthy and had undetectable levels of HIV in the blood and in examined brain and rectal tissues.[7][82] Before the transplant, low levels of HIV X4, which does not use the CCR5 receptor, were also detected. Following the transplant, however, this type of HIV was not detected either.[7] However, this outcome is consistent with the observation that cells expressing the CCR5-Δ32 variant protein lack both the CCR5 and CXCR4 receptors on their surfaces, thereby conferring resistance to a broad range of HIV variants including HIVX4.[83] After over six years, the patient has maintained the resistance to HIV and has been pronounced cured of the HIV infection.[8]
Enrollment of HIV-positive patients in a clinical trial was started in 2009 in which the patients' cells were genetically modified with a zinc finger nuclease to carry the CCR5-Δ32 trait and then reintroduced into the body as a potential HIV treatment.[84][85] Results reported in 2014 were promising.[11]
In November 2018, Jiankui He announced that he had edited two human embryos, to attempt to disable the gene for CCR5, which codes for a receptor that HIV uses to enter cells. He said that twin girls, Lulu and Nana, had been born a few weeks earlier, and that the girls still carried functional copies of CCR5 along with disabled CCR5 (mosaicism), hence being still vulnerable to HIV. The work was widely condemned as unethical, dangerous, and premature.[89][90]
^Kay MA, Walker BD (March 2014). "Engineering cellular resistance to HIV". The New England Journal of Medicine. 370 (10): 968–969. doi:10.1056/NEJMe1400593. PMID24597871.
^Samson M, Labbe O, Mollereau C, Vassart G, Parmentier M (March 1996). "Molecular cloning and functional expression of a new human CC-chemokine receptor gene". Biochemistry. 35 (11): 3362–3367. doi:10.1021/bi952950g. PMID8639485.
^Velasco-Velázquez M, Xolalpa W, Pestell RG (November 2014). "The potential to target CCL5/CCR5 in breast cancer". Expert Opinion on Therapeutic Targets. 18 (11): 1265–1275. doi:10.1517/14728222.2014.949238. PMID25256399. S2CID7976259.
^Cocchi F, DeVico AL, Garzino-Demo A, Arya SK, Gallo RC, Lusso P (15 December 1995). "Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells". Science (New York, N.Y.). 270 (5243): 1811–5. doi:10.1126/science.270.5243.1811. PMID8525373.
^Michael NL, Louie LG, Rohrbaugh AL, Schultz KA, Dayhoff DE, Wang CE, et al. (October 1997). "The role of CCR5 and CCR2 polymorphisms in HIV-1 transmission and disease progression". Nature Medicine. 3 (10): 1160–1162. doi:10.1038/nm1097-1160. PMID9334732. S2CID23196048.
^ abLucotte G (September 2001). "Distribution of the CCR5 gene 32-basepair deletion in West Europe. A hypothesis about the possible dispersion of the mutation by the Vikings in historical times". Human Immunology. 62 (9): 933–936. doi:10.1016/S0198-8859(01)00292-0. PMID11543895.
^Vargas AE, Cechim G, Correa JF, Gomes PA, Macedo GS, de Medeiros RM, et al. (July 2009). "Pros and cons of a missing chemokine receptor--comments on "Is the European spatial distribution of the HIV-1-resistant CCR5-D32 allele formed by a breakdown of the pathocenosis due to the historical Roman expansion?" by Eric Faure and Manuela Royer-Carenzi (2008)". Infection, Genetics and Evolution. 9 (4): 387–389. doi:10.1016/j.meegid.2009.01.001. PMID19472441.
Choe H, Martin KA, Farzan M, Sodroski J, Gerard NP, Gerard C (June 1998). "Structural interactions between chemokine receptors, gp120 Env and CD4". Seminars in Immunology. 10 (3): 249–257. doi:10.1006/smim.1998.0127. PMID9653051.
Sheppard HW, Celum C, Michael NL, O'Brien S, Dean M, Carrington M, et al. (March 2002). "HIV-1 infection in individuals with the CCR5-Delta32/Delta32 genotype: acquisition of syncytium-inducing virus at seroconversion". Journal of Acquired Immune Deficiency Syndromes. 29 (3): 307–313. doi:10.1097/00042560-200203010-00013. PMID11873082.
Freedman BD, Liu QH, Del Corno M, Collman RG (2003). "HIV-1 gp120 chemokine receptor-mediated signaling in human macrophages". Immunologic Research. 27 (2–3): 261–276. doi:10.1385/IR:27:2-3:261. PMID12857973. S2CID32006625.
Esté JA (September 2003). "Virus entry as a target for anti-HIV intervention". Current Medicinal Chemistry. 10 (17): 1617–1632. doi:10.2174/0929867033457098. PMID12871111.
Yi Y, Lee C, Liu QH, Freedman BD, Collman RG (2004). "Chemokine receptor utilization and macrophage signaling by human immunodeficiency virus type 1 gp120: Implications for neuropathogenesis". Journal of Neurovirology. 10 (Suppl 1): 91–96. doi:10.1080/753312758. PMID14982745. S2CID9065929.
Seibert C, Sakmar TP (2004). "Small-molecule antagonists of CCR5 and CXCR4: a promising new class of anti-HIV-1 drugs". Current Pharmaceutical Design. 10 (17): 2041–2062. doi:10.2174/1381612043384312. PMID15279544.
Lipp M, Müller G (2003). "Shaping up adaptive immunity: the impact of CCR7 and CXCR5 on lymphocyte trafficking". Verhandlungen der Deutschen Gesellschaft für Pathologie. 87: 90–101. PMID16888899.
Balistreri CR, Caruso C, Grimaldi MP, Listì F, Vasto S, Orlando V, et al. (April 2007). "CCR5 receptor: biologic and genetic implications in age-related diseases". Annals of the New York Academy of Sciences. 1100 (1): 162–172. Bibcode:2007NYASA1100..162B. doi:10.1196/annals.1395.014. PMID17460174. S2CID8437349.
"Chemokine Receptors: CCR5". IUPHAR Database of Receptors and Ion Channels. International Union of Basic and Clinical Pharmacology. Archived from the original on 18 January 2021. Retrieved 21 July 2006.
Tidak untuk dikacaukan dengan tauhue, jajanan yang biasanya juga disebut sebagai kembang tahu. Kembang tahu Pembuatan yuba dari endapan di permukaan rebusan kedelai. Kembang tahu atau yuba (bahasa Jepang) adalah produk sampingan proses perebusan kedelai yang diambil dari endapan yang terkumpul di permukaan air perebusan kedelai. Dalam bahasa Inggris dikenal sebagai tofu skin. Fucuk, kembang tahu kering dari Bangka. Kembang tahu biasa dijual kering dengan berbagai konsistensi. Berdasarkan keke...
Juiaparus Juiaparus batus Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Kelas: Insecta Ordo: Coleoptera Famili: Cerambycidae Genus: Juiaparus Juiaparus adalah genus kumbang tanduk panjang yang berasal dari famili Cerambycidae. Genus ini juga merupakan bagian dari ordo Coleoptera, kelas Insecta, filum Arthropoda, dan kingdom Animalia. Larva kumbang dalam genus ini biasanya mengebor ke dalam kayu dan dapat menyebabkan kerusakan pada batang kayu hidup atau kayu yang telah ditebang. Re...
Hong Kong TV series or program Hidden FacesWritten byChoi Ting-ting Sin Siu-ling Man Kin-Fai Hor Lo-yanDirected byKwan Shu-mingStarringFrankie Lam David Chiang Wilson Tsui Kate Yeung Leanne Ho Lesley Chiang Sam Chan Rain LauCountry of originHong KongOriginal languageCantoneseNo. of episodes18ProductionExecutive producerLuo Yuen-harProduction locationHong KongEditorChoi Ting-tingCamera setupMulti-cameraProduction companyHong Kong Television NetworkOriginal releaseRelease24 July (2015-07-...
CipongkorKecamatanNegara IndonesiaProvinsiJawa BaratKabupatenBandung BaratPemerintahan • CamatDedi Rohendi, SPPopulasi • Total101,744 jiwa (BPS 2.022) jiwaKode Kemendagri32.17.12 Kode BPS3217060 Desa/kelurahan14 Pemandangan di desa Mekarsari di Cipongkor Cipongkor adalah sebuah kecamatan di Kabupaten Bandung Barat, Provinsi Jawa Barat, Indonesia. Kecamatan ini berjarak sekitar 40,1 Kilometer dari ibu kota kabupaten Bandung Barat ke arah barat daya melalui Cihampel...
Walter-Gropius-Haus The Walter Gropius House (also known as Gropiushaus) is a residential building with nine floors and 66 apartments at the Händelallee 1-9 in Berlin Hansaviertel, bordering its central Grosser Tiergarten park. It was designed by Walter Gropius / The Architects' Collaborative - TAC (Cambridge, Massachusetts, USA) in collaboration with Wils Ebert, Berlin, on the occasion of the first International Building Exhibition (Interbau), in 1957. It is regarded as an important moderni...
Economies of the five dominant countries in Southeast Asia Not to be confused with Four Asian Tigers. The Tiger Cub Economies (in yellow) consist of five countries, Indonesia, Malaysia, Philippines, Thailand, Vietnam. Also shown are the original tigers (South Korea, Taiwan, Singapore and Hong Kong) (in red). The Tiger Cub Economies collectively refer to the economies of the developing countries of Indonesia, Malaysia, the Philippines, Thailand and Vietnam,[1] the five dominant countri...
BathurstKepulauan TiwiGeografiLokasiLaut TimorKoordinat11°35′S 130°18′E / 11.583°S 130.300°E / -11.583; 130.300KepulauanKepulauan TiwiPulau besarBathurst, BuchananLuas2.600 km2PemerintahanNegaraAustraliaWilayahWilayah UtaraKota terbesarWurrumiyanga (1.582 jiwa)KependudukanPendudukca. 1640 jiwaKepadatan0.63 jiwa/km2 Pulau Bathurst (bahasa Inggris: Bathurst Island) adalah salah satu Kepulauan Tiwi di Wilayah Utara di lepas pantai utara...
County in Texas, United States County in TexasWood CountyCountyThe Wood County Courthouse in Quitman SealLocation within the U.S. state of TexasTexas's location within the U.S.Coordinates: 32°47′N 95°23′W / 32.78°N 95.38°W / 32.78; -95.38Country United StatesState TexasFounded1850Named forGeorge Tyler WoodSeatQuitmanLargest cityMineolaArea • Total695.719 sq mi (1,801.90 km2) • Land645.234 sq mi (1,671.1...
2020 tablet operating system by Apple Inc. Operating system iPadOS 14The iPadOS 14 home screen running on the 7th-generation iPadDeveloperApple Inc.Written inC, C++, Objective-C, Swift, assembly languageOS familyUnix-like, based on Darwin (BSD), iOSSource modelClosed with open-source componentsGeneralavailabilitySeptember 16, 2020; 3 years ago (2020-09-16)Latest release14.8.1[1] (18H107) (October 26, 2021; 2 years ago (2021-10-26)) [±]M...
Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Pengembangan web – berita · surat kabar · buku · cendekiawan · JSTOR Pengembangan web Pengembangan web adalah istilah yang luas untuk pekerjaan yang terlibat dalam mengembangkan suatu situs web untuk int...
Hiu banteng Carcharhinus leucas Rekaman dan Status konservasiRentanIUCN39372 TaksonomiKerajaanAnimaliaFilumChordataKelasChondrichthyesOrdoCarcharhiniformesFamiliCarcharhinidaeGenusCarcharhinusSpesiesCarcharhinus leucas (Müller dan Henle, 1839) Tata namaProtonimCarcharias leucas Distribusi Hiu banteng (Carcharhinus leucas) merupakan salah satu jenis hiu yang termasuk dalam famili Carcharhinidae. Spesies ini dikenal dengan nama bull shark. Spesies hiu banteng memiliki beberapa nama lokal di In...
Heavy field gun 152-mm gun model 1910/34 152-mm gun M1910/34 in the Artillery Museum, St Petersburg, RussiaTypeHeavy field gunPlace of originSoviet UnionProduction historyNo. built275SpecificationsMassCombat: 7,100 kg(15,653 lbs)Travel: 7,820 kg(17,240 lbs) (with limber)Length8.10 m (26 ft 7 in)Barrel lengthBore: 4.24 m (13 ft 11 in) L/27.9Overall: 4.40 m (14 ft 5 in) L/29 (without muzzle brake)Width2.34 m (7 ft 8 ...
巴西社会民主党Partido da Social Democracia Brasileira巴西社会民主党标志领袖塔索·热雷萨蒂成立1988年6月25日,36年前(1988-06-25)设立1989年8月24日,34年前(1989-08-24)分裂自巴西民主運動党总部SGAS Q.607,Ed. Metrópolis, Mód. B Cobertura 2- AsaSulBrasília意識形態第三條道路[1] 派別 社會民主主義[2][3][4]社會自由主義[5][6]自由民主主�...
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada April 2024. Judo Paralimpiade, Judo Paralimpik, Judo Buta atau Judo Tunanetra adalah adaptasi dari seni bela diri Jepang dari judo untuk pesaing tunanetra. Aturan olahraganya hanya sedikit berbeda dari kompetisi judo biasa. Judo Paralimpiade telah menjadi bagian dar...
GT World Challenge AsiaKategoriGrand tourer mobil sportNegara atau daerahInternasionalMusim pertama2017Juara pembalap Roelof BruinsJuara tim Absolute RacingSitus webwww.gt-world-challenge-asia.com Musim saat ini GT World Challenge Asia (sebelumnya Blancpain GT Series Asia dan Blancpain GT World Challenge Asia) adalah sebuah seri balapan GT, dipromosikan oleh Organisasi Stéphane Ratel dan digelar oleh Team Asia One GT Management. Juara Pembalap Tahun GT3 Keseluruhan GT3 Silver GT3 Pro-Am GT3 ...
Chemical substance that enables neurotransmission For an introduction to concepts and terminology used in this article, see Chemical synapse. Postsynaptic density Voltage-gated Ca++ channel Synaptic vesicle Neurotransmitter transporter Receptor Neurotransmitter Axon terminal Synaptic cleft DendriteStructure of a typical chemical synapse A neurotransmitter is a signaling molecule secreted by a neuron to affect another cell across a synapse. The cell receiving the signal, or target cell, may be...