TEK tyrosine kinase

TEK
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesTEK, CD202B, TIE-2, TIE2, VMCM, VMCM1, TEK tyrosine kinase, TEK receptor tyrosine kinase, GLC3E
External IDsOMIM: 600221; MGI: 98664; HomoloGene: 397; GeneCards: TEK; OMA:TEK - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_000459
NM_001290077
NM_001290078
NM_001375475
NM_001375476

NM_001290549
NM_001290551
NM_013690

RefSeq (protein)

NP_000450
NP_001277006
NP_001277007
NP_001362404
NP_001362405

NP_001277478
NP_001277480
NP_038718

Location (UCSC)Chr 9: 27.11 – 27.23 MbChr 4: 94.63 – 94.76 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Angiopoietin-1 receptor also known as CD202B (cluster of differentiation 202B) is a protein that in humans is encoded by the TEK gene.[5][6] Also known as TIE2, it is an angiopoietin receptor.

Function

The TEK receptor tyrosine kinase is expressed almost exclusively in endothelial cells in mice, rats, and humans. (TEK is closely related to the TIE receptor tyrosine kinase.)[7]

This receptor possesses a unique extracellular domain containing 2 immunoglobulin-like loops separated by 3 epidermal growth factor-like repeats that are connected to 3 fibronectin type III-like repeats.[8] The ligand for the receptor is angiopoietin-1.[7] TEK has also been suggested as a marker for nucleus pulposus progenitor cells, from the intervertebral disc, which upon activation by Angiopoietin-1 starts to multiply and differentiate.[9][10]

Defects in TEK are associated with inherited venous malformations; the TEK signaling pathway appears to be critical for endothelial cell-smooth muscle cell communication in venous morphogenesis.[7]

In cancer patients, TEK (Tie2) is expressed in a subpopulation of monocytes that home in on the tumor and are essential for the formation of new blood vessels there.[11]

Interactions

TEK tyrosine kinase has been shown to interact with:

See also

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000120156Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000006386Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Partanen J, Armstrong E, Mäkelä TP, Korhonen J, Sandberg M, Renkonen R, Knuutila S, Huebner K, Alitalo K (April 1992). "A novel endothelial cell surface receptor tyrosine kinase with extracellular epidermal growth factor homology domains". Molecular and Cellular Biology. 12 (4): 1698–707. doi:10.1128/mcb.12.4.1698. PMC 369613. PMID 1312667.
  6. ^ Boon LM, Mulliken JB, Vikkula M, Watkins H, Seidman J, Olsen BR, Warman ML (September 1994). "Assignment of a locus for dominantly inherited venous malformations to chromosome 9p". Human Molecular Genetics. 3 (9): 1583–7. doi:10.1093/hmg/3.9.1583. PMID 7833915.
  7. ^ a b c "Entrez Gene: TEK TEK tyrosine kinase, endothelial (venous malformations, multiple cutaneous and mucosal)".
  8. ^ a b c Fiedler U, Krissl T, Koidl S, Weiss C, Koblizek T, Deutsch U, et al. (January 2003). "Angiopoietin-1 and angiopoietin-2 share the same binding domains in the Tie-2 receptor involving the first Ig-like loop and the epidermal growth factor-like repeats". The Journal of Biological Chemistry. 278 (3): 1721–7. doi:10.1074/jbc.M208550200. PMID 12427764.
  9. ^ Sakai D, Nakamura Y, Nakai T, Mishima T, Kato S, Grad S, et al. (2012). "Exhaustion of nucleus pulposus progenitor cells with ageing and degeneration of the intervertebral disc". Nature Communications. 3: 1264. Bibcode:2012NatCo...3.1264S. doi:10.1038/ncomms2226. PMC 3535337. PMID 23232394.
  10. ^ Sakai D, Schol J, Bach FC, Tekari A, Sagawa N, Nakamura Y, et al. (June 2018). "Successful fishing for nucleus pulposus progenitor cells of the intervertebral disc across species". JOR Spine. 1 (2): e1018. doi:10.1002/jsp2.1018. PMC 6686801. PMID 31463445.
  11. ^ Venneri MA, De Palma M, Ponzoni M, Pucci F, Scielzo C, Zonari E, et al. (June 2007). "Identification of proangiogenic TIE2-expressing monocytes (TEMs) in human peripheral blood and cancer". Blood. 109 (12): 5276–85. doi:10.1182/blood-2006-10-053504. PMID 17327411. S2CID 13999825.
  12. ^ a b Sato A, Iwama A, Takakura N, Nishio H, Yancopoulos GD, Suda T (August 1998). "Characterization of TEK receptor tyrosine kinase and its ligands, Angiopoietins, in human hematopoietic progenitor cells". International Immunology. 10 (8): 1217–27. doi:10.1093/intimm/10.8.1217. PMID 9723709.
  13. ^ a b Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N, Daly TJ, Davis S, Sato TN, Yancopoulos GD (July 1997). "Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis". Science. 277 (5322): 55–60. doi:10.1126/science.277.5322.55. PMID 9204896.
  14. ^ Davis S, Aldrich TH, Jones PF, Acheson A, Compton DL, Jain V, Ryan TE, Bruno J, Radziejewski C, Maisonpierre PC, Yancopoulos GD (December 1996). "Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning". Cell. 87 (7): 1161–9. doi:10.1016/s0092-8674(00)81812-7. PMID 8980223.
  15. ^ Jones N, Dumont DJ (September 1998). "The Tek/Tie2 receptor signals through a novel Dok-related docking protein, Dok-R". Oncogene. 17 (9): 1097–108. doi:10.1038/sj.onc.1202115. PMID 9764820. S2CID 20187169.
  16. ^ Master Z, Jones N, Tran J, Jones J, Kerbel RS, Dumont DJ (November 2001). "Dok-R plays a pivotal role in angiopoietin-1-dependent cell migration through recruitment and activation of Pak". The EMBO Journal. 20 (21): 5919–28. doi:10.1093/emboj/20.21.5919. PMC 125712. PMID 11689432.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.