Artikel atau sebagian dari artikel ini mungkin diterjemahkan dari Geometry di en.wikipedia.org. Isinya masih belum akurat, karena bagian yang diterjemahkan masih perlu diperhalus dan disempurnakan. Jika Anda menguasai bahasa aslinya, harap pertimbangkan untuk menelusuri referensinya dan menyempurnakan terjemahan ini. Anda juga dapat ikut bergotong royong pada ProyekWiki Perbaikan Terjemahan.
(Pesan ini dapat dihapus jika terjemahan dirasa sudah cukup tepat. Lihat pula: panduan penerjemahan artikel)
Geometri adalah cabang matematika yang bersangkutan dengan pertanyaan bentuk. Seorang ahli matematika yang bekerja di bidang geometri disebut ahli geometri. Geometri muncul secara independen di sejumlah budaya awal sebagai ilmu pengetahuan praktis tentang panjang, luas, dan volume, dengan unsur-unsur dari ilmu matematika formal yang muncul di Barat sedini Thales (abad 6 SM). Pada abad ke-3 SM geometri dimasukkan ke dalam bentuk aksiomatik oleh Euclid, yang dibantu oleh geometri Euclid, menjadi standar selama berabad-abad. Archimedes mengembangkan teknik cerdik untuk menghitung luas dan isi, dalam banyak cara mengantisipasi kalkulus integral yang modern. Bidang astronomi, terutama memetakan posisi bintang dan planet pada falak dan menggambarkan hubungan antara gerakan benda langit, menjabat sebagai sumber penting masalah geometrik selama satu berikutnya dan setengah milenium. Kedua geometri dan astronomi dianggap di dunia klasik untuk menjadi bagian dari Quadrivium tersebut, subset dari tujuh seni liberal dianggap penting untuk warga negara bebas untuk menguasai.
Pengenalan koordinat oleh René Descartes dan perkembangan bersamaan aljabar menandai tahap baru untuk geometri, karena tokoh geometris, seperti kurva pesawat, sekarang bisa diwakili analitis, yakni dengan fungsi dan persamaan. Hal ini memainkan peran penting dalam munculnya kalkulus pada abad ke-17. Selanjutnya, teori perspektif menunjukkan bahwa ada lebih banyak geometri dari sekadar sifat metrik angka: perspektif adalah asal geometri proyektif. Subyek geometri selanjutnya diperkaya oleh studi struktur intrinsik benda geometris yang berasal dengan Euler dan Gauss dan menyebabkan penciptaan topologi dan geometri diferensial.
Dalam waktu Euclid tidak ada perbedaan yang jelas antara ruang fisik dan ruang geometris. Sejak penemuan abad ke-19 geometri non-Euclid, konsep ruang telah mengalami transformasi radikal, dan muncul pertanyaan: mana ruang geometris paling sesuai dengan ruang fisik? Dengan meningkatnya matematika formal dalam abad ke-20, juga 'ruang' (dan 'titik', 'garis', 'bidang') kehilangan isi intuitif, jadi hari ini kita harus membedakan antara ruang fisik, ruang geometris (di mana ' ruang ',' titik 'dll masih memiliki arti intuitif mereka) dan ruang abstrak. Geometri kontemporer menganggap manifold, ruang yang jauh lebih abstrak dari ruang Euclid yang kita kenal, yang mereka hanya sekitar menyerupai pada skala kecil. Ruang ini mungkin diberkahi dengan struktur tambahan, yang memungkinkan seseorang untuk berbicara tentang panjang. Geometri modern memiliki ikatan yang kuat dengan beberapa fisika, dicontohkan oleh hubungan antara geometri pseudo-Riemann dan relativitas umum. Salah satu teori fisika termuda, teori string, juga sangat geometris dalam rasa.
Sedangkan sifat visual geometri awalnya membuatnya lebih mudah diakses daripada bagian lain dari matematika, seperti aljabar atau teori bilangan, bahasa geometrik juga digunakan dalam konteks yang jauh dari tradisional, asal Euclidean nya (misalnya, dalam geometri fraktal dan geometri aljabar).
Salah satu teori awal mengenai geometri dikatakan oleh Plato dalam dialog Timaeus (360SM) bahwa alam semesta terdiri dari 4 elemen: tanah, air, udara dan api. Hal tersebut tersebut dimaksud untuk menggambarkan kondisi material padat, cair, gas dan plasma. Hal ini mendasari bentuk-bentuk geometri: tetrahedron, kubus(hexahedron), octahedron, dan icosahedron di mana masing-masing bentuk tersebut menggambarkan elemen api, tanah, udara dan air. Bentuk-bentuk ini yang lalu lebih dikenal dengan nama Platonic Solid.
Ada penambahan bentuk kelima yaitu Dodecahedron, yang menurut Aristoteles untuk menggambarkan elemen kelima yaitu ether.
Permulaan geometri paling awal yang tercatat dapat ditelusuri ke Mesopotamia kuno dan Mesir pada milenium ke-2 SM.[1][2] Geometri pada awalnya adalah kumpulan prinsip yang ditemukan secara empiris mengenai panjang, sudut, luas, dan volume, yang dikembangkan untuk memenuhi beberapa kebutuhan praktis dalam survei, dan konstruksi. Teks geometri paling awal yang diketahui adalah MesirPapirus Rhind (2000–1800 SM) dan Papirus Moskow (sekitar 1890 SM), Tablet tanah liat Babilonia seperti Plimpton 322 (1900 SM). Contohnya, Papirus Moskow memberikan rumus untuk menghitung volume piramida terpotong, atau frustum.[3] Tablet tanah liat (350-50 SM) menunjukkan bahwa astronom Babilonia menerapkan prosedur trapesium untuk menghitung posisi Jupiter dan gerakan dalam kecepatan waktu. Prosedur geometris tersebut mengantisipasi Kalkulator Oxford, termasuk teorema kecepatan rata-rata, pada abad ke 14.[4] Di selatan Mesir, Nubia kuno membangun sistem geometri termasuk versi awal jam matahari.[5][6]
Pada abad ke 7 SM, Yunani ahli matematika Thales of Miletus menggunakan geometri untuk menyelesaikan masalah seperti menghitung tinggi piramida dan jarak kapal. Hal tersebut dikreditkan dengan penggunaan pertama dari penalaran deduktif yang diterapkan pada geometri, dengan menurunkan empat akibat wajar dari Teorema Thales.[7] Pythagoras mendirikan Sekolah Pythagoras, yang dikreditkan dengan bukti pertama dari Teorema Pythagoras,[8] Padahal pernyataan teorema tersebut memiliki sejarah yang panjang.[9][10]Eudoxus (408–355 SM) mengembangkan metode, yang memungkinkan perhitungan luas dan volume gambar lengkung,[11] serta teori rasio yang menghindari masalah besaran yang tidak dapat dibandingkan, yang memungkinkan geometer berikutnya untuk membuat kemajuan yang signifikan. Sekitar 300 SM, geometri direvolusi oleh Euclid, yang Elemen, secara luas dianggap sebagai buku teks paling sukses dan berpengaruh sepanjang masa,[12] diperkenalkan ketelitian matematika melalui metode aksiomatik dan merupakan contoh paling awal dari format yang masih digunakan dalam matematika saat ini, bahwa definisi, aksioma, teorema, dan bukti. Meskipun sebagian besar konten Elemen sudah diketahui, Euclid mengatur menjadi satu kerangka kerja logis yang koheran.[13]Element diketahui oleh semua orang terpelajar di Barat hingga pertengahan abad ke 20 dan isinya masih diajarkan di kelas geometri hingga saat ini..[14]Archimedes (c. 287–212 SM) dari Syracuse menggunakan metode tersebut untuk menghitung luas di bawah busur dari parabola dengan penjumlahan dari tak terhingga pada deret, dan memberikan perkiraan yang sangat akurat dari Pi.[15] Dia juga mempelajari spiral yang menyandang namanya dan memperoleh rumus untuk volume dari permukaan revolusi.
Geometri aljabar merupakan cabang matematika yang mempelajari akar dari suatu suku banyak. Dalam kajian modern, digunakan berbagai alat dari aljabar abstrak seperti aljabar komutatif dan teori kategori. Studi geometri aljabar dilakukan dengan mengonstruksi suatu objek matematika (misalnya, skema dan sheaf) lalu kemudian meninjau hubungannya dengan struktur yang sudah dikenal. Berbagai alat ini dibuat untuk membantu memahami permasalahan mendasar terkait geometri.[16]
Salah satu objek fundamental dalam studi geometri aljabar adalah varietas aljabarik yang merupakan manifestasi geometris dari akar suatu sistem suku banyak. Dari struktur ini, dapat dikaji berbagai kurva aljabarik seperti garis, parabola, elips, kurva eliptik dan lain-lain.
Geometri aljabar merupakan salah satu topik sentral dalam matematika dengan berbagai topik terkait seperti analisis kompleks, topologi, teori bilangan, teori kategori, dan lain-lain.
Persegi adalah bangun datar dua dimensi yang dibentuk oleh empat buah rusuk yang sama panjang dan memiliki empat buah sudut yang kesemuanya adalah sudut siku-siku. Bangun ini disebut juga sebagai bujur sangkar.
Persegi panjang adalah bangun datar dua dimensi yang dibentuk oleh dua pasang sisi yang masing-masing sama panjang dan sejajar dengan pasangannya, dan memiliki empat buah sudut yang kesemuanya adalah sudut siku-siku.
Sebuah segitiga adalah poligon dengan tiga ujung dan tiga simpul. Ini adalah salah satu bentuk dasar dalam geometri. Segitiga dengan simpul A, B, dan C dilambangkan .
Dalam geometri Euclidean, setiap tiga titik, ketika non-collinear, menentukan segitiga unik dan sekaligus, sebuah bidang unik (yaitu ruang Euclidean dua dimensi). Dengan kata lain, hanya ada satu bidang yang mengandung segitiga itu, dan setiap segitiga terkandung dalam beberapa bidang. Jika seluruh geometri hanya bidang Euclidean, hanya ada satu bidang dan semua segitiga terkandung di dalamnya; namun, dalam ruang Euclidean berdimensi lebih tinggi, ini tidak lagi benar.
Trapesium adalah bangun datar dua dimensi yang dibentuk oleh empat buah rusuk yang dua di antaranya saling sejajar namun tidak sama panjang.Trapesium termasuk jenis bangun datarsegi empat yang mempunyai ciri khusus.
Jajar genjang atau jajaran genjang (bahasa Inggris: parallelogram) adalah bangun datar dua dimensi yang dibentuk oleh dua pasang rusuk yang masing-masing sama panjang dan sejajar dengan pasangannya, dan memiliki dua pasang sudut yang masing-masing sama besar dengan sudut di hadapannya. Jajar genjang termasuk turunan segiempat yang mempunyai ciri khusus. Jajar genjang dengan empat rusuk yang sama panjang disebut belah ketupat.
Lingkaran adalah bentuk yang terdiri dari semua titik dalam bidang yang berjarak tertentu dari titik tertentu, pusat; ekuivalennya adalah kurva yang dilacak oleh titik yang bergerak dalam bidang sehingga jaraknya dari titik tertentu adalah konstan. Jarak antara titik mana pun dari lingkaran dan pusat disebut jari-jari. Artikel ini adalah tentang lingkaran dalam geometri Euclidean, dan, khususnya, bidang Euclidean, kecuali jika dinyatakan sebaliknya.
Secara khusus, sebuah lingkaran adalah kurva tertutup sederhana yang membagi pesawat menjadi dua wilayah: interior dan eksterior. Dalam penggunaan sehari-hari, istilah "lingkaran" dapat digunakan secara bergantian untuk merujuk pada batas gambar, atau keseluruhan gambar termasuk bagian dalamnya; dalam penggunaan teknis yang ketat, lingkaran hanyalah batas dan seluruh gambar disebut cakram.
Lingkaran juga dapat didefinisikan sebagai jenis elips khusus di mana dua fokus bertepatan dan eksentrisitasnya adalah 0, atau bentuk dua dimensi yang melingkupi area per satuan perimeter kuadrat, menggunakan kalkulus variasi.
Elips
Elips atau oval yang beraturan adalah gambar yang menyerupai lingkaran yang telah dipanjangkan ke satu arah. Elips adalah salah satu contoh dari irisan kerucut dan dapat didefinisikan sebagai lokus dari semua titik, dalam satu bidang, yang memiliki jumlah jarak yang sama dari dua titik tetap yang telah ditentukan sebelumnya (disebut fokus).
Dalam bahasa Indonesia, elips atau oval yang beraturan juga sering dikenal istilah sepadan, yakni bulat lonjong (atau lonjong[18] saja), bulat bujur[19], dan bulat panjang.[19]
Euclid mengambil pendekatan abstrak untuk geometri di Elements,[23] salah satu buku paling berpengaruh yang pernah ditulis.[24] Euklides memperkenalkan aksioma, atau postulat tertentu, yang mengekspresikan sifat utama atau bukti dengan sendirinya dari titik, garis, dan bidang.[25] Untuk melanjutkan untuk secara ketat menyimpulkan properti lain dengan penalaran matematika. Ciri khas pendekatan geometri Euclid adalah ketelitiannya, dan kemudian dikenal sebagai geometri aksiomatik atau sintetik.[26] Pada awal abad ke-19, penemuan geometri non-Euclidean oleh Nikolai Ivanovich Lobachevsky (1792–1856), János Bolyai (1802–1860), Carl Friedrich Gauss (1777–1855) dan yang lainnya[27] menyebabkan kebangkitan minat dalam disiplin tersebut pada abad ke-20, David Hilbert (1862–1943) menggunakan penalaran aksiomatik dalam upaya untuk memberikan dasar geometri modern.[28]
Titik yang dianggap sebagai objek fundamental dalam geometri Euclidean. Mereka telah didefinisikan dalam berbagai cara, termasuk definisi Euclid sebagai 'yang tidak memiliki bagian'[29] dan melalui penggunaan aljabar atau set bersarang.[30] Banyak bidang geometri, seperti geometri analitik, geometri diferensial, dan topologi, semua objek dianggap dibangun dari titik. Namun demikian, ada beberapa studi geometri tanpa mengacu pada titik.[31]
Euclid mendeskripsikan sebuah garis sebagai "panjang tanpa lebar" yang "terletak sama terhadap titik-titik pada dirinya sendiri".[29] Dalam matematika modern, mengingat banyaknya geometri, konsep garis terkait erat dengan cara menggambarkan geometri. Misalnya, dalam geometri analitik, garis pada bidang sering didefinisikan sebagai himpunan titik yang koordinatnya memenuhi persamaan linier tertentu,[32] tetapi dalam pengaturan yang lebih abstrak, seperti geometri kejadian, garis mungkin merupakan objek independen, berbeda dari kumpulan titik yang terletak di atasnya.[33] Dalam geometri diferensial, geodesik adalah generalisasi gagasan garis menjadi ruang melengkung.[34]
Bidang adalah permukaan datar dua dimensi yang memanjang jauh tak terhingga.[29] Bidang digunakan di setiap bidang geometri. Contohnya, bidang dapat dipelajari sebagai permukaan topologi tanpa mengacu pada jarak atau sudut;[35] dapat dipelajari sebagai ruang affine, di mana collinearity dan rasio dapat dipelajari tetapi bukan jarak;[36] itu dapat dipelajari sebagai bidang kompleks menggunakan teknik analisis kompleks;[37] dan seterusnya.
Euclid mendefinisikan bidang sudut sebagai kemiringan satu sama lain, dalam bidang, dari dua garis yang saling bertemu, dan tidak terletak lurus satu sama lain.[29] Dalam istilah modern, sudut adalah sosok yang dibentuk oleh dua sinar, disebut sisi dari sudut, berbagi titik akhir yang sama, disebut simpul dari sudut.[38]
Kurva adalah objek 1 dimensi yang bisa lurus (seperti garis) atau tidak; kurva dalam ruang 2 dimensi disebut kurva bidang dan kurva dalam ruang 3 dimensi disebut.[42]
Dalam topologi, kurva didefinisikan dari fungsi pada interval bilangan real ke ruang lain.[35] Dalam geometri diferensial, definisi yang sama digunakan, tetapi fungsi penentu harus dapat terdiferensiasi [43] Studi geometri aljabar kurva aljabar, yang didefinisikan sebagai varietas aljabar dari dimensi satu.[44]
Luas dan volume dapat didefinisikan sebagai besaran fundamental yang terpisah dari panjang, atau dapat dijelaskan dan dihitung dalam istilah panjang dalam bidang atau ruang 3 dimensi.[47] Matematikawan telah menemukan banyak rumus untuk luas dan rumus untuk volume dari berbagai objek geometri. Dalam kalkulus, luas dan volume dapat didefinisikan dalam integral s, seperti integral Riemann[49] atau Integral Lebesgue.[50]-->
Kesesuaian dan kesamaan adalah konsep yang mendeskripsikan jika dua bentuk memiliki karakteristik yang serupa.[54] Dalam geometri Euclidean, kesamaan digunakan untuk mendeskripsikan objek yang memiliki bentuk yang sama, sedangkan congruence digunakan untuk mendeskripsikan objek yang memiliki ukuran dan bentuk yang sama.[55]<!-;Hilbert, in his work on creating a more rigorous foundation for geometry, treated congruence as an undefined term whose properties are defined by axioms.-->
Kesamaan dan kesamaan digeneralisasikan dalam geometri transformasi, yang mempelajari properti objek geometris yang dipertahankan oleh berbagai jenis transformasi.[56]-->
Geometer klasik memberikan perhatian khusus untuk membangun objek geometris yang telah dijelaskan dengan cara lain. Secara klasik, satu-satunya instrumen yang diperbolehkan dalam konstruksi geometris adalah kompas dan penggaris lurus. Selain itu, setiap konstruksi harus diselesaikan dalam jumlah langkah yang terbatas. Namun, beberapa masalah ternyata sulit atau tidak mungkin diselesaikan dengan cara ini sendiri, dan konstruksi cerdik menggunakan parabola dan kurva lainnya, serta perangkat mekanis.
Dimana geometri tradisional mengizinkan dimensi 1 (a garis), 2 (a bidang) dan 3 (dunia ambien kita dipahami sebagai ruang tiga dimensi)), matematikawan dan fisikawan telah menggunakan dimensi yang lebih tinggi selama hampir dua abad.[57] Salah satu contoh penggunaan matematika untuk dimensi yang lebih tinggi adalah ruang konfigurasi dari sistem fisik, yang memiliki dimensi yang sama dengan derajat bebas. Misalnya, konfigurasi sekrup dapat digambarkan dengan lima koordinat.[58]
Khususnya, geometri diferensial penting bagi fisika matematika karena postulasi relativitas umumAlbert Einstein bahwa alam semesta adalah lengkung.[72] Geometri diferensial dapat berupa intrinsik (artinya ruang yang dianggapnya adalah lipatan halus yang struktur geometrisnya diatur oleh metrik Riemannian, yang menentukan bagaimana jarak diukur di dekat setiap titik) atau ekstrinsik (di mana objek yang diteliti adalah bagian dari beberapa ruang Euclide datar ambien).[73]
Geometri Euklides bukanlah satu-satunya bentuk geometri historis yang dipelajari. Geometri bola telah lama digunakan oleh astronom, astrolog, dan navigator.[74]
Immanuel Kant berpendapat bahwa hanya ada satu, mutlak, geometri, yang diketahui benar a priori oleh fakultas pikiran batin: Geometri Euklides adalah sintetik a priori.[75] Pandangan ini pada awalnya agak ditantang oleh para pemikir seperti Saccheri, kemudian akhirnya dibatalkan oleh penemuan revolusioner geometri non-Euklides dalam karya-karya Bolyai, Lobachevsky, dan Gauss (yang tidak pernah menerbitkan teorinya).[76] They demonstrated that ordinary Euclidean space is only one possibility for development of geometry. A broad vision of the subject of geometry was then expressed by Riemann in his 1867 inauguration lecture Über die Hypothesen, welche der Geometrie zu Grunde liegen (On the hypotheses on which geometry is based),[77] hanya setelah kematiannya. Ide baru Riemann tentang ruang terbukti penting dalam teori relativitas umumAlbert Einstein. Geometri Riemannian, yang mempertimbangkan ruang yang sangat umum di mana pengertian panjang didefinisikan, adalah andalan geometri modern.[78]
Matematika dan seni terkait dalam berbagai cara. Contohnya, teori perspektif menunjukkan bahwa geometri lebih dari sekadar properti metrik dari sebuah figur.: perspektif adalah asal mula geometri proyektif.[79]
Seniman telah lama menggunakan konsep proporsi dalam desain. Vitruvius mengembangkan teori rumit tentang proporsi ideal untuk sosok manusia.[80] Konsep tersebut telah digunakan dan diadaptasi oleh seniman dari Michelangelo hingga seniman komik modern.[81]
Rasio emas adalah proporsi tertentu yang memiliki peran kontroversial dalam seni. Sering diklaim sebagai rasio panjang yang paling estetis, sering dikatakan sebagai rasio panjang karya seni terkenal, meskipun contoh yang paling dapat diandalkan dan tidak ambigu dibuat dengan sengaja oleh seniman yang mengetahui legenda tersebut.[82]
Ubin, atau tessellations, telah digunakan dalam seni sepanjang sejarah. Seni Islam sering menggunakan tessellation, seperti halnya seni Escher.[83] Karya Escher juga memanfaatkan geometri hiperbolik.
Cézanne mengajukan teori bahwa semua gambar dapat dibangun dari bola, kerucut, dan tabung. Ini masih digunakan dalam teori seni hari ini, meskipun daftar pasti bentuk bervariasi dari penulis ke penulis.[84][85]
Geometri memiliki banyak aplikasi dalam arsitektur. Faktanya, telah dikatakan bahwa geometri merupakan inti dari desain arsitektur.[86][87] Aplikasi geometri pada arsitektur mencakup penggunaan geometri proyektif untuk membuat perspektif paksa,[88] penggunaan bagian berbentuk kerucut dalam membangun kubah dan benda serupa,[64] penggunaan tessellations,[64] dan penggunaan simetri.[64]
Bidang astronomi, terutama yang berkaitan dengan pemetaan posisi bintang dan planet pada bola langit dan menjelaskan hubungan antara pergerakan benda-benda langit, telah menjadi sumber penting masalah geometris sepanjang sejarah.[89]
Kalkulus sangat dipengaruhi oleh geometri.[93] Misalnya, pengenalan koordinat oleh René Descartes dan perkembangan bersamaan aljabar menandai tahapan baru untuk geometri, karena figur geometris seperti kurva bidang dari sekarang dapat direpresentasikan secara analitis dalam bentuk fungsi dan persamaan. Ini memainkan peran kunci dalam munculnya kalkulus sangat kecil pada abad ke-17. Geometri analitik terus menjadi andalan dalam kurikulum pra-kalkulus dan kalkulus.[94][95]
^J. Friberg, "Metode dan tradisi matematika Babilonia. Plimpton 322, Pythagoras tiga kali lipat, dan persamaan parameter segitiga Babilonia", Historia Mathematica, 8, 1981, pp. 277–318.
^Depuydt, Leo (1 Januari 1998). "Gnomons di Meroë dan Trigonometri Awal". The Journal of Egyptian Archaeology. 84: 171–180. doi:10.2307/3822211. JSTOR3822211.
^Slayman, Andrew (27 Mei 1998). "Neolithic Skywatchers". Archaeology Magazine Archive. Diarsipkan dari versi asli tanggal 5 Juni 2011. Diakses tanggal 17 April 2011.Parameter |url-status= yang tidak diketahui akan diabaikan (bantuan)
^Kesalahan pengutipan: Tag <ref> tidak sah;
tidak ditemukan teks untuk ref bernama Boyer 1991 loc=Ionia dan Pythagoras p. 43
^Eves, Howard, Pengantar Sejarah Matematika, Saunders, 1990, ISBN0-03-029558-0.
^Kurt Von Fritz (1945). "Penemuan Ketidakbandingan oleh Hippasus dari Metapontum". The Annals of Mathematics.
^James R. Choike (1980). "Pentagram dan Penemuan Bilangan Irasional". The Two-Year College Mathematics Journal.
^(Boyer 1991, "Zaman Plato dan Aristoteles" p. 92)
^Howard Eves, Pengantar Sejarah Matematika, Saunders, 1990, ISBN0-03-029558-0 p. 141: "Tidak ada karya, kecuali Bible, yang telah digunakan secara lebih luas...."
^O'Connor, J.J.; Robertson, E.F. (February 1996). "Sejarah kalkulus". University of St Andrews. Diarsipkan dari versi asli tanggal 15 July 2007. Diakses tanggal 7 August 2007.Parameter |url-status= yang tidak diketahui akan diabaikan (bantuan)
^Vakil, Ravi (2017). Foundations of Algebraic Geometry.Parameter |url-status= yang tidak diketahui akan diabaikan (bantuan)
^ abcdeElemen Euclid - Semua tiga belas buku dalam satu volume, Berdasarkan terjemahan Heath, Green Lion Press ISBN1-888009-18-7.
^Clark, Bowman L. (Jan 1985). "Individu dan Titik geometri". Notre Dame Journal of Formal Logic. 26 (1): 61–75. doi:10.1305/ndjfl/1093870761.
^Gerla, G. (1995). "Pointless Geometries"(PDF). Dalam Buekenhout, F.; Kantor, W. Buku Pegangan geometri insiden: bangunan dan fondasi. North-Holland. hlm. 1015–1031. Diarsipkan dari versi asli(PDF) tanggal 17 July 2011.Parameter |url-status= yang tidak diketahui akan diabaikan (bantuan)
^Briggs, William L., and Lyle Cochran Calculus. "Early Transcendentals." ISBN978-0321570567.
^Yau, Shing-Tung; Nadis, Steve (2010). Bentuk Ruang Dalam: Teori String dan Geometri Dimensi Tersembunyi Alam Semesta. Buku Dasar. ISBN978-0-465-02023-2.
^Russell M. Cummings; Scott A. Morton; William H. Mason; David R. McDaniel (27 April 2015). Aerodinamika Komputasi Terapan. Cambridge University Press. hlm. 449. ISBN978-1-107-05374-8. Diarsipkan dari versi asli tanggal 2023-03-01. Diakses tanggal 2020-08-25.
^Nihat Ay; Jürgen Jost; Hông Vân Lê; Lorenz Schwachhöfer (25 August 2017). Geometri Informasi. Springer. hlm. 185. ISBN978-3-319-56478-4. Diarsipkan dari versi asli tanggal 2023-03-01. Diakses tanggal 2020-08-25.
^Kline (1972) "Pemikiran matematis dari zaman kuno hingga modern", Oxford University Press, p. 1032. Kant tidak menolak 'kemungkinan' logis (analitik a priori) dari geometri non-Euklides, lihat Jeremy Gray, "Ide Ruang Euclidean, Non-Euklides, dan Relativistik", Oxford, 1989; p. 85. Beberapa menyiratkan bahwa, dalam terang ini, Kant sebenarnya telah meramalkan perkembangan geometri non-Euklides, lih. Leonard Nelson, "Filsafat dan Aksioma," Socratic Method and Critical Philosophy, Dover, 1965, p. 164.
^Duncan M'Laren Young Sommerville (1919). Elemen Geometri Non-Euklides ... Open Court. hlm. 15ff. Diarsipkan dari versi asli tanggal 2023-03-01. Diakses tanggal 2020-08-25.
^Robin M. Green; Robin Michael Green (31 October 1985). Astronomi Bulat. Cambridge University Press. hlm. 1. ISBN978-0-521-31779-5. Diarsipkan dari versi asli tanggal 2023-03-01. Diakses tanggal 2020-08-25.
^Jon Rogawski; Colin Adams (30 January 2015). Kalkulus. W. H. Freeman. ISBN978-1-4641-7499-5. Diarsipkan dari versi asli tanggal 2023-03-01. Diakses tanggal 2020-08-25.
Hayashi, Takao (2003). "Indian Mathematics". Dalam Grattan-Guinness, Ivor. Companion Encyclopedia of the History and Philosophy of the Mathematical Sciences. 1. Baltimore, MD: The Johns Hopkins University Press. hlm. 118–130. ISBN978-0-8018-7396-6.
Hayashi, Takao (2005). "Indian Mathematics". Dalam Flood, Gavin. The Blackwell Companion to Hinduism. Oxford: Basil Blackwell. hlm. 360–375. ISBN978-1-4051-3251-0.
Nikolai I. Lobachevsky (2010). Pangeometry. Heritage of European Mathematics Series. 4. translator and editor: A. Papadopoulos. European Mathematical Society.
English seaman and privateer (1535–1594) SirMartin FrobisherSir Martin Frobisher by Cornelis Ketel, 1577Bornc. 1535 or 1539Altofts, Yorkshire, EnglandDied(1594-11-22)22 November 1594 (aged 55–59)Plymouth, EnglandNationalityEnglishOccupationSeamanSpouse(s)Isobel Richard (1559–1588) Dorothy Wentworth (1590–1594)Parent(s)Bernard Frobisher and Margaret YorkSignature Sir Martin Frobisher (/ˈfroʊbɪʃər/; c. 1535/1539 – 22 November 1594[1]) was an English sailor and...
Pengibaran bendera 17 Agustus 1945 Berkas:BerdiriBendera.pngWakil Presiden Indonesia tidak mengangkat tangan saat pengibaran bendera Merah Putih; atas: JK tahun 2015, kiri bawah: JK tahun 2008, kanan bawah: Hatta tahun 1945 Hormat bendera adalah penghormatan yang dilakukan oleh warga negara terhadap bendera negara yang menjadi salah-satu simbol negara. Di Indonesia, masyarakat sipil dengan pakaian sipil (yang tidak berseragam) tidak mengangkat tangan saat memberi hormat kepada bendera, tetapi...
Museum Linggam Cahaya merupakan salah satu museum di Kabupaten Lingga, Provinsi Kepulauan Riau yang didirikan pada tahun 2002. Pendirian museum ini dilatarbelakangi oleh keinginan pemerintah daerah Kabupaten Lingga untuk mengamankan dan melestarikan benda-benda bersejarah yang ada di Kabupaten Lingga. Camat Lingga pada saat itu, Ir. Muhammad Ishak memprakarsai pengumpulan dan pengamanan benda-benda bersejarah Lingga yang masih tersimpan di rumah-rumah warga. Koleksi Koleksi Museum Linggam Cah...
International Organization for Standardization[1]Logo ISOKeanggotaan ISO (lihat di bawah)SingkatanISOTanggal pendirian23 Februari 1947TipeLembaga Swadaya MasyarakatTujuanStandar internasionalKantor pusatJenewa, SwissJumlah anggota 162 anggota[2]Bahasa resmi Inggris, Prancis, Rusia[3]Situs webwww.iso.org Organisasi Internasional untuk Standardisasi (Inggris: International Organization for Standardization), (Prancis: Organisation internationale de normalisation) ...
لمعانٍ أخرى، طالع الوحدات (توضيح). غلاف كتيب النظام الدولي للوحدات. النظام العالمي للوحدات أو النظام الدولي للوحدات (بالإنجليزية: International System of Units) (اختصارا SI ) نظام وحدات القياس الأوسع انتشارًا في العالم، وهو يستخدم في كل بلدان العالم باستثناء الولايات المتحدة الأمر�...
Private school in Staten Island, New York, United StatesSt. Joseph Hill AcademyEarly 21st centuryAddress850 Hylan Boulevard(Arrochar) Staten Island, New York 10305United StatesInformationTypePrivateMottoSummum BonumReligious affiliation(s)Roman Catholic;Daughters of Divine CharityPatron saint(s)St. JosephEstablished1919 (105 years ago) (1919)FounderDaughters of Divine CharityGradesPre-K 3 – 12Enrollment~1,000 (Pre-K 3 – 12) (2020[needs update])Campus size14 acr...
Title in the peerage of Ireland Marquessate of ElyArms: Gules, three Bars dancetty Argent. Crest: A Lion rampant Gules, armed and langued Azure. Supporters: On either side an Eagle with wings inverted Argent, beaked and legged Or, charged on the breast with a Trefoil slipped Vert.Creation date29 December 1800Created byGeorge IIIPeeragePeerage of IrelandFirst holderCharles Loftus, 1st Marquess of ElyPresent holderJohn Tottenham, 9th Marquess of ElyHeir presumptiveLord Timothy TottenhamSubsidia...
لمعانٍ أخرى، طالع السودان (توضيح). جمهورية السودان جمهورية السودان السودانعلم السودان السودانشعار السودان الشعار الوطنيالنصر لنا النشيد: نحن جند الله جند الوطن الأرض والسكان إحداثيات 15°N 32°E / 15°N 32°E / 15; 32 [1] أعلى قمة جبل مرة (3,042 متر...
2006 election in Washington state Washington State Senate elections, 2006 ← 2004 November 7, 2006 2008 → 24 seats of the Washington State Senate25 seats needed for a majority Majority party Minority party Leader Rosa Franklin Mike Hewitt Party Democratic Republican Leader's seat 29th-Tacoma 16th-Walla Walla Last election 26 23 Seats won 32 17 Seat change 6 6 Results: Democratic gain ...
Politics of Fiji Constitution History Executive President (list) Wiliame Katonivere Prime Minister Sitiveni Rabuka Cabinet Attorney-General Siromi Turaga Leader of the Opposition Inia Seruiratu Legislative Parliament Speaker: Naiqama Lalabalavu Judiciary Supreme Court Chief Justice: Kamal Kumar Court of Appeal High Court Elections Electoral system Voting Political parties Post-independence elections 1972Mar 1977Sep 19771982198719921994199920012006201420182022Next Local government Recent local...
The topic of this article may not meet Wikipedia's notability guidelines for companies and organizations. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be merged, redirected, or deleted.Find sources: International Association of Students in Agricultural and Related Sciences –...
Steakhouse in Portland, Oregon, U.S. Clyde's Prime RibRestaurant informationOwner(s)Alex BondPrevious owner(s)Clyde JenkinsStreet address5474 Northeast Sandy BoulevardCityPortlandCountyMultnomahStateOregonPostal/ZIP Code97213CountryUnited StatesCoordinates45°32′28″N 122°36′23″W / 45.5412°N 122.6063°W / 45.5412; -122.6063Websiteclydesprimerib.com Clyde's Prime Rib is a steakhouse in Portland, Oregon. Description Clyde's Prime Rib is a castle-themed steakhous...
كاي إيسيل معلومات شخصية الميلاد 25 يونيو 1995 (29 سنة) الطول 1.90 م (6 قدم 3 بوصة) مركز اللعب حارس مرمى الجنسية ألمانيا معلومات النادي النادي الحالي كارلسروه الرقم 1 مسيرة الشباب سنوات فريق FC Ottenheim FV Sulz 0000–2011 Offenburger FV [الإنجليزية] 2011–2014 فرايبورغ المسيرة الاحترا�...
جامعة حطاي مصطفى كمال معلومات التأسيس 1992 الموقع الجغرافي إحداثيات 36°20′09″N 36°11′56″E / 36.3358°N 36.19899°E / 36.3358; 36.19899 المكان حطاي البلد تركيا إحصاءات الموقع الموقع الرسمي تعديل مصدري - تعديل جامعة مصطفى كمال (بالتركية:Mustafa Kemal Üniversitesi) هي جامعة حكوم...
This article is written like a manual or guide. Please help rewrite this article and remove advice or instruction. (June 2023) Moncagua, San Miguel. El Salvador is a popular destination for surf tourism due to the large waves present in the Pacific Ocean. Alegría Lake The Emerald of America. Lake Coatepeque in the west of the country The San Miguel (volcano) during the eruption of December 29, 2013. Tourism accounts for a large part of El Salvador's economy. El Salvador has many natural att...