Ку́пол (n-схилий купол) — тіло, утворене з'єднанням двох багатокутників, у якому один (основа) має вдвічі більше сторін, порівняно з іншим (верхньою гранню). З'єднання багатокутників здійснюється рівнобедреними трикутниками і прямокутниками.
n-схилий купол — призматоїд, що складається з 2n-кутника (нижня основа купола), правильного n-кутника (верхня грань, що паралельна основі), та бічних граней: n прямокутників та nрівнобедрених трикутників. При чому нижня грань може бути правильним 2n-кутником, або напівправильним 2n-кутником[1], у якого сторони рівні через одну і всі кути рівні.
Купол можна розглядати як призму, де один з багатокутників наполовину стягнуто попарним об'єднанням вершин.
Купол має вісь симетрії порядку n, що проходить через центри основ, а також n площин дзеркальної симетрії, що проходять через вісь купола та середини сторін нижньої основи.
Два купола можуть бути з'єднані по їх нижній основі, утворюючи многогранник бікупол[en].
Якщо купол має всі ребра одинакової довжини (правильногранний) ‒ n = 3, 4, 5, то: Висота купола:
Радіус описаної сфери:
Рівносторонній «Шестисхилий купол» є плоскою фігурою. Таким чином, сімейство куполів з правильними гранями існує до n = 5 включно.
Куполи з числом сторін багатокутників n > 5 можна побудувати тільки з неправильними трикутними і прямокутними гранями.
Координати вершин
Визначення купола не вимагає правильності основи і верхньої грані, але зручно розглядати випадки, в яких куполи мають максимальну симетрію, Cnv. В цьому випадку верхня грань є правильним n-кутником, тоді як основа є правильним 2n-кутником, або 2n-кутником з двома різними довжинами сторін (через одну) і тими ж кутами, що й у правильного 2n- кутника.
Розташуємо купол у координатній системі так, щоб його основа лежала в площині Oxy з центром в початку координат, а верхня грань проходила паралельно цій площині на висоті h. Вісь Oz є віссю симетрії порядку n. Пронумеруємо вершини основи числами від V1 до V2n, а вершини верхньої грані — числами від A1 до An.
Координати вершин[2] тоді можна записати таким чином:
При n = 2, верхня грань вироджується в ребро. Антикуполи є підкласом призматоїдів.
Антикупол має вісь симетрії порядку n, що проходить через центри основ та перпендикулярна їм, а також n площин дзеркальної симетрії, що проходять через вісь многогранника та вершини нижньої основи.
Не можна побудувати n-кутний антикупол, щоб всі його грані були правильними багатокутниками; лише деякі грані можуть бути зроблені правильними.
Координати вершин n ‒ антикупола можемо отримати з координат вершин n ‒ купола шляхом повороту верхнього n ‒ кутника на кут
Розташуємо антикупол у координатній системі так, щоб його основа лежала в площині Oxy з центром в початку координат, а верхня грань проходила паралельно цій площині на висоті h. Вісь Oz є віссю симетрії порядку n. Пронумеруємо вершини основи числами від V1 до V2n, а вершини верхньої грані — числами від A1 до An.
Координати вершин[2] тоді можна записати таким чином:
Поворот n — кутника відбувається по- або проти годинникової стрілки (відповідно знаки «‒» або «+»)
Зірчасті куполи існують для всіх основ {n/d}, де 6/5 < n/d < 6 і d непарне. На границях куполи перетворюються на плоскі фігури. Якщо d парне, нижня основа {2n/d} вироджується — ми можемо утворити куполоїд або напівукупол шляхом видалення цієї виродженої грані і дозволивши трикутникам і квадратам з'єднуватися один з одним. Зокрема, тетрагемігексаедр можна розглядати як {3/2}-куполоїд. Усі куполи орієнтовані, тоді як всі куполоїди неорієнтовані. Якщо в куполоїда n/d > 2, трикутники і квадрати не покривають всю основу і на ній залишається тоненька перетинка, яка просто закриває отвір. Таким чином, куполоїди {5/2} і {7/2} на малюнку вище мають перетинки (не заповнені), тоді як куполоїди {5/4} і {7/4} їх не мають.
Висота h купола {n/d} або куполоїда задається формулою
.
Зокрема, h = 0 на границях n/d = 6 та n/d = 6/5, і h максимальне при n/d = 2 (трикутна призма, де трикутники розташовані вертикально)[3][4].
На малюнках вище зірчасті куполи показано в кольорах, щоб підкреслити їх грані — грань n/d-кутника показано червоним, грань 2n/d-кутника показано жовтим, квадрати подано синім кольором, а трикутники — зеленим. Куполоїди мають червоні n/d-кутні грані, жовті квадратні грані, а трикутні грані пофарбовано в блакитний колір, другу ж основу видалено.