Pomorski Dom Sztuki w Bydgoszczy
|
Read other articles:
1946 film by Orson Welles The StrangerTheatrical release posterDirected byOrson WellesWritten by Anthony Veiller (screenplay) Victor Trivas (adaptation) Decla Dunning (adaptation) Uncredited: Orson Welles John Huston Story byVictor TrivasProduced byS. P. EagleStarring Orson Welles Loretta Young Edward G. Robinson Philip Merivale Richard Long Billy House CinematographyRussell MettyEdited byErnest J. NimsMusic byBronisław KaperProductioncompanyInternational PicturesDistributed byRKO Radio Pict...
It's a Mad, Mad, Mad World 3SutradaraStephen ShinProduserStephen ShinDitulis olehChan Kin-ChungPang Tsai-ChoiPemeranBill TungLydia ShumEric TsangElsie ChanLoletta LeePauline KwanLowell LoChan San-HoFrances YipTeresa CarpioPenata musikRichard YuenSinematograferLee Kin-KeungChan Ying-KitDistributorD&B Films Co., Ltd.Tanggal rilis Hong Kong 1989NegaraHong KongBahasaKantonPrekuelIt's a Mad, Mad, Mad World 2SekuelIt's a Mad, Mad, Mad World TooIMDbInformasi di IMDb It's a Mad, Mad, Mad Wo...
Irish TV series or programme OMG! Jedward's Dream FactoryTitle card for Series 1–2.Also known asUna's Dream TicketGenreChildren's TV, realityStarringJedwardUna Healy (series 3)Country of originIrelandOriginal languagesEnglish, IrishNo. of series3No. of episodes30ProductionRunning time22–26 minutesProduction companyTyrone ProductionsOriginal releaseNetworkRTÉ TwoReleaseDecember 25, 2011 (2011-12-25) –January 4, 2013 (2013-01-04); 2014 OMG! Jedward's Dream Factory is an I...
Nagpur नागपूरMetropolisJulukan: The Orange city, Tiger capital of IndiaCountry IndiaStateMaharashtraRegionVidarbhaDistrictNagpurFounded1702 A.D.[1]PendiriRaja Buland ShahPemerintahan • JenisMayor–Council • BadanNMC • MayorAnil Sole (BJP) • Municipal CommissionerShyam D Wardhane[2] • Police CommissionerKaushal Pathak[3]Luas • Metropolis218 km2 (84 sq mi) �...
Part of a series onBritish law Acts of Parliament of the United Kingdom Year 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 ...
Capital and largest city of Germany This article is about the capital city of Germany. For other uses, see Berlin (disambiguation). Place in GermanyBerlinCapital city, state and municipalitySpree river, Museum Island and Berlin TV Tower in MitteVictory ColumnCharlottenburg PalaceRotes RathausBrandenburg GateReichstagBerlin CathedralPotsdam Square FlagCoat of armsNicknames: Grey City[1] Spreeathen, or Athens on the Spree River[2]Show BerlinShow EuropeCoordinates: 52°31′...
Chemical compound LinopirdineClinical dataATC codeN06BX09 (WHO) Identifiers IUPAC name 1-phenyl-3,3-bis(pyridin-4-ylmethyl)-1,3-dihydro-2H-indol-2-one CAS Number105431-72-9 NPubChem CID3932IUPHAR/BPS2599ChemSpider3795 YUNIII5TB3NZ94TKEGGD04741 YChEMBLChEMBL319111 YCompTox Dashboard (EPA)DTXSID6045163 Chemical and physical dataFormulaC26H21N3OMolar mass391.474 g·mol−13D model (JSmol)Interactive image SMILES O=C2N(c1ccccc1C2(Cc3ccncc3)Cc4ccncc4)c5ccccc5 InC...
Слоёное тесто Страна происхождения Франция Компоненты Основные масло сливочноеводамука Медиафайлы на Викискладе Слоёное тесто — тесто, используемое при выпечке слоёных пирожков, булочек, самсы, других кулинарных изделий. Характерной особенностью слоёного т�...
Overview of the presence, role and impact of Hinduism in Canada Canadian HindusHindu Heritage Centre in MississaugaTotal population 828,195 (2021)[1] 2.3% of the Canadian PopulationRegions with significant populationsOntario573,700British Columbia81,320Alberta78,520Quebec47,390Manitoba18,355ReligionsHinduismMajority:VaishnavismMinority:ShaivismLanguagesOfficialCanadian English, Canadian French HomeTamil • Hindi • Punjabi • Gujarati ...
Concept that the judiciary should be independent Judicial independence is the concept that the judiciary should be independent from the other branches of government. That is, courts should not be subject to improper influence from the other branches of government or from private or partisan interests. Judicial independence is important for the idea of separation of powers. Different countries deal with the idea of judicial independence through different means of judicial selection, or choosin...
此條目没有列出任何参考或来源。 (2022年2月15日)維基百科所有的內容都應該可供查證。请协助補充可靠来源以改善这篇条目。无法查证的內容可能會因為異議提出而被移除。 圭亚那奥林匹克协会成立時間1935總部圭亚那奥林匹克委员会信息國家或地區 圭亚那IOC編碼GUY加入IOC1948区域组织泛美體育組織 圭亚那奥林匹克协会(英語:Guyana Olympic Association,IOC编码:GUY)是代表�...
Aurei dei tre imperatori adottivi: in alto Nerva, al centro Traiano, sotto Adriano. Per monetazione da Nerva ad Adriano si intende l'insieme delle monete emesse da Roma durante il principato dei primi tre imperatori adottivi: Nerva, Traiano ed Adriano (dal 96 al 138). Indice 1 Contesto storico 2 Nerva 2.1 Tematiche principali 2.1.1 Concordia degli eserciti 2.1.2 Disposizioni amministrative e fiscali 3 Traiano 3.1 Tematiche principali 3.1.1 La Germania Magna (97-98) 3.1.2 Conquista della Dacia...
Il teorema fondamentale dell'algebra asserisce che ogni polinomio in una variabile di grado n ≥ 1 {\displaystyle n\geq 1} (cioè non costante) con coefficienti complessi, del tipo a n z n + … + a 1 z + a 0 , {\displaystyle a_{n}z^{n}+\ldots +a_{1}z+a_{0},} ammette almeno una radice complessa (o zero). Equivalentemente (per definizione) il teorema asserisce che il campo dei numeri complessi è algebricamente chiuso. Dal teorema segue che un polinomio a coefficienti complessi amme...
Anglican evangelical group Church SocietyPredecessorChurch AssociationNational Church LeagueFormation1950TypeEvangelical Anglican charityHeadquartersDean Wace House, Watford, EnglandKey peopleJ. C. Ryle, William Griffith Thomas, Philip Edgcumbe Hughes, Gerald Bray, Wallace BennWebsitewww.churchsociety.org Church Society is a conservative, evangelical Anglican organisation and registered charity[1] formed in 1950 by the merger of the Anglican Church Association (founded 1865) and Natio...
German communist writer (1900–1974) Li De redirects here. For the Tang dynasty prince, see Prince Zhanghuai. This article is about the Comintern adviser in China. For the Prime Minister of Prussia, see Otto Braun. For the German poet, see Otto Braun (poet). This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this ...
Apple > Mac (コンピュータ) > macOS > MacOS Big Sur macOS Big Sur macOS ファミリー 開発者 Appleウェブサイト www.apple.com/jp/macos/最新の安定版 11.7.9 (20G1426) - 2023年7月24日ソースモデル オープンソースのコンポーネントを用いたクローズドソースライセンス APSL・ソフトウェア利用許諾契約・秘密保持契約カーネル型 ハイブリッドカーネル (XNU)更新方式 ソフトウェア�...
Лебёдка SLQ-25 Nixie на борту линкора BB-61 «Айова» Выпуск буксируемого модуля системы SLQ-25 Nixie AN/SLQ-25 Nixie — американская система противоторпедной защиты надводных кораблей. Состоит из бортового генератора сигналов и буксируемого постановщика гидроакустических помех. Применяет...
Uninhabited island of Puerto Rico This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Cayos de Caña Gorda – news · newspapers · books · scholar · JSTOR (May 2021) (Learn how and when to remove this message) Cayos de Caña GordaCayo Aurora (western key) from ferry boatCensus 2000 map of Cayos de Caña GordaCayos...
Ice hockey team This article uses bare URLs, which are uninformative and vulnerable to link rot. Please consider converting them to full citations to ensure the article remains verifiable and maintains a consistent citation style. Several templates and tools are available to assist in formatting, such as reFill (documentation) and Citation bot (documentation). (August 2022) (Learn how and when to remove this message) This article needs additional citations for verification. Please help improv...
Pour les articles homonymes, voir SGN. Graphe de la fonction signe La fonction signe, ou signum en latin, souvent représentée sgn dans les expressions, est une fonction mathématique qui extrait le signe d'un nombre réel, c'est-à-dire que l'image d'un nombre par cette application est 1 si le nombre est strictement positif, 0 si le nombre est nul, et -1 si le nombre est strictement négatif : ∀ x ∈ R , sgn ( x ) = { − 1 si x < 0 0 si ...